This document is being provided by OpenNebula Systems under the Creative Commons Attribution-NonCommercial-Share Alike License.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE DOCUMENT.
CONTENTS

1 Concepts and Terminology ... 1
 1.1 Start Here: OpenNebula Overview 1
 1.2 OpenNebula Key Features ... 5
 1.3 Glossary .. 9

2 Release Notes 5.6 .. 11
 2.1 What’s New in 5.6 .. 11
 2.2 Resolved Issues in 5.6.1 .. 14
 2.3 Sunstone Note ... 15
 2.4 Platform Notes ... 16
 2.5 Compatibility Guide .. 21
 2.6 Known Issues .. 24
 2.7 Acknowledgements ... 26

3 Release Notes 5.6.2 Hotfix ... 27
 3.1 What’s a HotFix Release? .. 27
 3.2 Resolved Issues in 5.6.2 .. 27
 3.3 Sunstone Note ... 28

4 Upgrading ... 29
 4.1 Overview ... 29
 4.2 Upgrading from OpenNebula 5.6.x 29
 4.3 Upgrading from OpenNebula 5.4.x 33
 4.4 Upgrading from OpenNebula 5.2.x 37
 4.5 Upgrading from OpenNebula 5.0.x 42
 4.6 Upgrading from OpenNebula 4.14.x 46
 4.7 Upgrading from OpenNebula 4.12.x 52
 4.8 Upgrading from OpenNebula 4.10.x 59
 4.9 Upgrading from OpenNebula 4.8.x 65
 4.10 Upgrading from OpenNebula 4.6.x 70
 4.11 Upgrading from OpenNebula 4.4.x 76
 4.12 Upgrading from OpenNebula 4.2 80
 4.13 Upgrading from OpenNebula 4.0.x 85
 4.14 Upgrading from OpenNebula 3.8.x 90
 4.15 vCenter upgrade 5.2 to 5.4 ... 98
1.1 Start Here: OpenNebula Overview

Welcome to OpenNebula documentation!

OpenNebula is an open-source management platform to build IaaS private, public and hybrid clouds. Installing a cloud from scratch could be a complex process, in the sense that many components and concepts are involved. The degree of familiarity with these concepts (system administration, infrastructure planning, virtualization management . . .) will determine the difficulty of the installation process.

If you are new to OpenNebula you should go through this short introduction before proceeding to the deployment and administration guides.

1.1.1 Step 1. Choose Your Hypervisor

The first step is to decide on the hypervisor that you will use in your cloud infrastructure. The main OpenNebula distribution provides full support for the two most widely used hypervisors, KVM and VMware (through vCenter), at different levels of functionality.

- **Virtualization and Cloud Management on KVM.** Many companies use OpenNebula to manage data center virtualization, consolidate servers, and integrate existing IT assets for computing, storage, and networking. In this deployment model, OpenNebula directly integrates with KVM and has complete control over virtual and physical resources, providing advanced features for capacity management, resource optimization, high availability and business continuity. Some of these deployments additionally use OpenNebula’s **Cloud Management and Provisioning** features when they want to federate data centers, implement cloud bursting, or offer self-service portals for end users.

- **Cloud Management on VMware vCenter.** Other companies use OpenNebula to provide a multi-tenant, cloud-like provisioning layer on top of VMware vCenter. These deployments are looking for provisioning, elasticity and multi-tenancy cloud features like virtual data centers provisioning, datacenter federation or hybrid cloud computing to connect in-house infrastructures with public clouds, while the infrastructure is managed by already familiar tools for infrastructure management and operation, such as vSphere and vCenter Operations Manager.

After having installed the cloud with one hypervisor you may add other hypervisors. You can deploy heterogeneous multi-hypervisor environments managed by a single OpenNebula instance. An advantage of using OpenNebula on VMware is the strategic path to openness as companies move beyond virtualization toward a private cloud. OpenNebula can leverage existing VMware infrastructure, protecting IT investments, and at the same time gradually integrate other open-source hypervisors, therefore avoiding future vendor lock-in and strengthening the negotiating position of the company.

There are other virtualization technologies, like LXD or Xen, supported by the community. Please refer to the OpenNebula Add-ons Catalog.
1.1.2 Step 2. Design and Install the Cloud

2.1. Design the Cloud Architecture

In order to get the most out of a OpenNebula Cloud, we recommend that you create a plan with the features, performance, scalability, and high availability characteristics you want in your deployment. We have prepared Cloud Architecture Design guides for KVM and vCenter to help you plan an OpenNebula installation, so you can easily architect your deployment and understand the technologies involved in the management of virtualized resources and their relationship. These guides have been created from the collective information and experiences from hundreds of users and cloud client engagements. Besides main logical components and interrelationships, this guides document software products, configurations, and requirements of infrastructure platforms recommended for a smooth OpenNebula installation.

2.2. Install the Front-end

Next step is the installation of OpenNebula in the cloud front-end. This installation process is the same for any underlying hypervisor.

Optionally you can setup a high available cluster for OpenNebula for OpenNebula to reduce downtime of core OpenNebula services, and configure a MySQL backend as an alternative to the default Sqlite backend if you are planning a large-scale infrastructure.

2.3. Install the Virtualization hosts

Now you are ready to add the virtualization nodes. The OpenNebula packages bring support for KVM and vCenter nodes. In the case of vCenter, a host represents a vCenter cluster with all its ESX hosts. You can add different hypervisors to the same OpenNebula instance, or any other virtualization technology, like LXD or Xen, supported by the community. Please refer to the OpenNebula Add-ons Catalog.

1.1.3 Step 3. Set-up Infrastructure and Services

3.1. Integrate with Data Center Infrastructure

Now you should have an OpenNebula cloud up and running with at least one virtualization node. The next step is, if needed, to perform the integration of OpenNebula with your infrastructure platform and define the configuration of...
its components. When using the vCenter driver, no additional integration is required because the interaction with the underlying networking, storage and compute infrastructure is performed through vCenter.

However when using KVM, in the open cloud architecture, OpenNebula directly manages the hypervisor, networking and storage platforms, and you may need additional configuration:

- **Networking setup** with 802.1Q VLANs, ebtables, Open vSwitch or VXLAN.
- **Storage setup** with filesystem datastore, LVM datastore, Ceph, Dev, or iSCSI datastore.
- **Host setup** with the configuration options for the KVM hosts, Monitoring subsystem, Virtual Machine HA or PCI Passthrough.

3.2. Configure Cloud Services

OpenNebula comes by default with an internal **user/password authentication system**. Optionally you can enable an external Authentication driver like ssh, x509, ldap or Active Directory.

Sunstone, the OpenNebula GUI, brings by default a pre-defined configuration of views. Optionally it can be customized and extended to meet your needs. You can customize the roles and views, improve security with x509 authentication and SSL or improve scalability for large deployments.

We also provide **references** with a detailed description of the different configuration files, and logging and debugging reports of the OpenNebula services.

1.1.4 Step 4. Operate your Cloud

4.1. Define a Provisioning Model

Before configuring multi-tenancy and defining the provisioning model of your cloud, we recommend you go through this introduction to the OpenNebula provisioning model. In a small installation with a few hosts, you can skip this guide and use OpenNebula without giving much thought to infrastructure partitioning and provisioning. But for medium and large deployments you will probably want to provide some level of isolation and structure.

- Regarding the **underlying infrastructure**, OpenNebula provides complete functionality for the management of the physical hosts and clusters in the cloud. A Cluster is a group of Hosts that can have associated Datastores and Virtual Networks.
- Regarding **user management**, OpenNebula features advanced multi-tenancy with powerful users and groups management, an Access Control List mechanism allowing different role management with fine grain permission granting over any resource, resource quota management to track and limit computing, storage and networking utilization, and a configurable accounting and showback systems to visualize and report resource usage data and to allow their integration with chargeback and billing platforms, or to guarantee fair share of resources among users.
- Last but not least, you can define VDCs (Virtual Data Center) as assignments of one or several user groups to a pool of physical resources. While clusters are used to group physical resources according to common characteristics such as networking topology or physical location, Virtual Data Centers (VDCs) allow to create “logical” pools of resources (which could belong to different clusters and cones) and allocate them to user groups.

4.2. Manage Virtual Resources

Now everything is ready for operation. OpenNebula provides full control to manage virtual resources.
• **Virtual machine image management** that allows to store disk images in catalogs (termed datastores), that can be then used to define VMs or shared with other users. The images can be OS installations, persistent data sets or empty data blocks that are created within the datastore.

• **Virtual network management** of Virtual networks that can be organized in network catalogs, and provide means to interconnect virtual machines. This kind of resources can be defined as IPv4, IPv6, or mixed networks, and can be used to achieve full isolation between virtual networks. Networks can be easily interconnected by using virtual routers and KVM users can also dynamically configure security groups.

• **Virtual machine template management** with template catalog system that allows to register virtual machine definitions in the system, to be instantiated later as virtual machine instances.

• **Virtual machine instance management** with a number of operations that can be performed to control lifecycle of the virtual machine instances, such as migration (live and cold), stop, resume, cancel, power-off, etc.

Several reference guides are provided for more information about definition files, templates and CLI.

4.3. Create Virtual Machines

One of the most important aspects of the cloud is the preparation of the images for our users. OpenNebula uses a method called contextualization to send information to the VM at boot time. Its most basic usage is to share networking configuration and login credentials with the VM so it can be configured. More advanced cases can be starting a custom script on VM boot or preparing configuration to use OpenNebula Gate.

1.1.5 Step 5. Install Advanced Components

This step is optional and only for advanced users. We recommend you familiarize with OpenNebula before installing these components.

OpenNebula brings the following advanced components:

• Implementation of the EC2 Query and EBS public cloud interfaces.

• OneFlow allows multi-VM application and auto-scaling to define, execute and manage multi-tiered elastic applications, or services composed of interconnected Virtual Machines with deployment dependencies between them and auto-scaling rules.

• The datacenter federation functionality allows for the centralized management of multiple instances of OpenNebula for scalability, isolation and multiple-site support.

• Application insight with OneGate allows Virtual Machine guests to pull and push VM information from OpenNebula. Users and administrators can use it to gather metrics, detect problems in their applications, and trigger OneFlow elasticity rules from inside the VM.

• Marketplaces for sharing, provisioning and consuming cloud images. They can be seen as external datastores, where images can be easily imported, exported and shared by a federation of OpenNebula instances.

• Cloud bursting gives support to build a hybrid cloud, an extension of a private cloud to combine local resources with resources from remote cloud providers. A whole public cloud provider can be encapsulated as a local resource to be able to use extra computational capacity to satisfy peak demands. Out of the box connectors are shipped to support Amazon EC2 and Microsoft Azure cloud bursting.

1.1.6 Step 6. Integrate with other Components

This step is optional and only for integrators and builders.

Because no two clouds are the same, OpenNebula provides many different interfaces that can be used to interact with the functionality offered to manage physical and virtual resources.
1.2 OpenNebula Key Features

OpenNebula offers a **simple but feature-rich and flexible solution** to build and manage data center virtualization and enterprise clouds. This guide summarizes its key features(*). You can also refer to the *Platform Notes* included in the documentation of each version to know about the infrastructure platforms and services supported by OpenNebula.

INTERFACES FOR CLOUD CONSUMERS

- De-facto standard cloud APIs with compatibility with cloud ecosystem tools
- Simple, clean, intuitive GUI for cloud consumers to allow non-IT end users to easily create, deploy and manage compute, storage and network resources

VIRTUAL MACHINE MANAGEMENT

- Virtual infrastructure management adjusted to enterprise data centers with full control, monitoring and accounting of virtual resources
• Virtual machine image management through catalogs of disk images (termed datastores) with OS installations, persistent data sets or empty data blocks that are created within the datastore
• Virtual machine template management through catalogs of templates that allow to register virtual machine definitions in the system to be instantiated later as virtual machine instances
• Virtual machine instance management with full control of virtual machine lifecycle
• Programmable VM operations allowing users to schedule actions
• Volume hotplugging and disk snapshot capabilities and disk resizing for KVM virtual machines

VIRTUAL NETWORK MANAGEMENT
• Advanced network virtualization capabilities with traffic isolation, address reservation, flexible definition of address ranges to accommodate any address distribution, definition of generic attributes to define multi-tier services...
• IPv6 support with definition site and global unicast addresses
• Virtual routers
• Security Groups to define firewall rules and apply them to KVM Virtual Machines

APPLICATION CONFIGURATION AND INSIGHT
• Automatic installation and configuration of application environments
• VM attributes can be provided by the user when the template is instantiated
• Wide range of guest operating system including Microsoft Windows and Linux
• Gain insight cloud applications so their status and metrics can be easily queried through OpenNebula interfaces and used in auto-scaling rules

MULTI-VM APPLICATION MANAGEMENT
• Automatic execution of multi-tiered (multi-VM) applications and their provision from a catalog and self-service portal
• Automatic scaling of multi-tiered applications according to performance metrics and time schedule

INTERFACES FOR ADMINISTRATORS AND ADVANCED USERS
• Powerful Command Line Interface that resembles typical UNIX commands applications
• Easy-to-use Sunstone Graphical Interface providing usage graphics and statistics with cloudwatch-like functionality, remote access through VNC or SPICE, different system views for different roles, catalog access, multiple-zone management...
• Sunstone is easily customizable to define multiple cloud views for different user groups

APPLIANCE MARKETPLACE
• Access to the public OpenNebula Systems Marketplace with a catalog of OpenNebula-ready cloud images
• Create your private centralized catalog (external datastore) of cloud applications (images and templates)
• Move VM images and templates across different types of datastores within the same OpenNebula instance
• Share VM images in Federation environments across several OpenNebula instances

ACCOUNTING AND SHOWBACK
• Configurable accounting system to report resource usage data and guarantee fair share of resources among users
• Easy integration with chargeback and billing platforms
• Showback capabilities to define cost associated to CPU/hours and MEMORY/hours per VM Template
MULTI-TENANCY AND SECURITY

- Fine-grained ACLs for resource allocation
- Powerful user and role management
- Administrators can groups users into organizations that can represent different projects, division...
- Integration with external identity management services
- Special authentication mechanisms for SunStone (OpenNebula GUI) and the Cloud Services (EC2)
- Login token functionality to password based logins
- Fine-grained auditing
- Support for isolation at different levels
- Advanced access control policies for VMs to redefine the access level (ADMIN, MANAGE and USE) required for each VM action
- Traceability on VM actions, VM history records logs the data associated to the action performed on a VM

ON-DEMAND PROVISION OF VIRTUAL DATA CENTERS

- A VDC (Virtual Data Center) is a fully-isolated virtual infrastructure environment where a Group of users, optionally under the control of the group admin, can create and manage compute and storage capacity
- There is a pre-configured Sunstone view for group admins

CAPACITY AND PERFORMANCE MANAGEMENT

- Host management with complete functionality for the management of the virtualization nodes in the cloud
- Dynamic creation of Clusters as pools of hosts that share datastores and virtual networks for load balancing, high availability, and high performance computing
- Customizable and highly scalable monitoring system and also can be integrated with external data center monitoring tools.
- Powerful and flexible scheduler for the definition of workload and resource-aware allocation policies such as packing, striping, load-aware, affinity-aware...
- Definition of groups of related VMs and set VM affinity rules across them.
- Resource quota management to track and limit computing, storage and networking resource utilization
- Support for multiple data stores to balance I/O operations between storage servers, or to define different SLA policies (e.g. backup) and performance features for different KVM VM types or users
- PCI passthrough available for KVM VMs that need consumption of raw GPU devices

FEDERATED CLOUD ENVIRONMENTS

- Federation of multiple OpenNebula Zones for scalability, isolation or multiple-site support
- Users can seamlessly provision virtual machines from multiple zones with an integrated interface both in Sunstone and CLI

HIGH AVAILABILITY AND BUSINESS CONTINUITY

- High availability architecture in active-passive configuration
- Persistent database backend with support for high availability configurations
- Configurable behavior in the event of host or KVM VM failure to provide easy to use and cost-effective failover solutions

CLOUD BURSTING
• Build a hybrid cloud to combine your local resources with resources from remote cloud provider and use extra computational capacity to satisfy peak demands

PLATFORM
• Fully platform independent
• Hypervisor agnostic with broad hypervisor support (KVM and VMware vCenter) and centralized management of environments with multiple hypervisors
• Broad support for commodity and enterprise-grade hypervisor, monitoring, storage, networking and user management services
• Packages for major Linux distributions

CUSTOMIZATION AND INTEGRATION
• Modular and extensible architecture to fit into any existing datacenter
• Customizable drivers for the main subsystems to easily leverage existing IT infrastructure and system management products: storage, monitoring, networking, authentication, virtualization, cloud bursting and market
• API for integration with higher level tools such as billing, self-service portals...
• Hook manager to trigger administration scripts upon VM state change
• Sunstone custom routes and tabs to extend the sunstone server
• OneFlow API to create, control and monitor multi-tier applications or services composed of interconnected Virtual Machines.
• OpenNebula Add-on Catalog with components enhancing the functionality provided by OpenNebula
• Configuration and tuning parameters to adjust behavior of the cloud management instance to the requirements of the environment and use cases

LICENSING
• Fully open-source software released under Apache license

INSTALLATION AND UPGRADE PROCESS
• Configurable to deploy public, private and hybrid clouds
• All key functionalities for enterprise cloud computing, storage and networking in a single install
• Long term stability and performance through a single integrated patching and upgrade process
• Automatic import of existing VMs running in local hypervisors and public clouds for hybrid cloud computing
• Optional building from source code
• System features a small footprint, less than 10Mb

QUALITY ASSURANCE
• Internal quality assurance process for functionality, scalability, performance, robustness and stability
• Technology matured through an active and engaged large community
• Scalability, reliability and performance tested on many massive scalable production deployments consisting of hundreds of thousands of cores and VMs

PRODUCT SUPPORT
• Best-effort community support
• SLA-based commercial support directly from the developers
• Integrated tab in Sunstone to access OpenNebula Systems professional support

(*). Because OpenNebula leverages the functionality exposed by the underlying platform services, its functionality and performance may be affected by the limitations imposed by those services.

• The list of features may change on the different platform configurations
• Not all platform configurations exhibit a similar performance and stability
• The features may change to offer users more features and integration with other virtualization and cloud components
• The features may change due to changes in the functionality provided by underlying virtualization services

1.3 Glossary

1.3.1 OpenNebula Components

• Front-end: Machine running the OpenNebula services.
• Host: Physical machine running a supported hypervisor. See the Host subsystem.
• Cluster: Pool of hosts that share datastores and virtual networks. Clusters are used for load balancing, high availability, and high performance computing.
• Datastore: Storage medium used as disk images repository or to hold images for running VMs.
• Sunstone: OpenNebula web interface. Learn more about Sunstone.
• Self-Service OpenNebula web interfaced towards the end user. It is implemented by configuring a user view of the Sunstone Portal.
• EC2 Service: Server that enables the management of OpenNebula with EC2 interface. Learn more about EC2 Service.
• OCA: OpenNebula Cloud API. It is a set of libraries that ease the communication with the XML-RPC management interface. Learn more about ruby and java APIs.

1.3.2 OpenNebula Resources

• Template: Virtual Machine definition. These definitions are managed with the onetemplate command.
• Image: Virtual Machine disk image, created and managed with the oneimage command.
• Virtual Machine: Instantiated Template. A Virtual Machine represents one life-cycle, and several Virtual Machines can be created from a single Template. Check out the VM management guide.
• Virtual Network: A group of IP leases that VMs can use to automatically obtain IP addresses. See the Networking subsystem.
• Virtual Data Center (VDC): Defines an assignment of one or several Groups to a pool of Physical Resources. Typically this pool of Physical Resources consists of resources from one or several Clusters that could belong to different Zones or public external clouds for hybrid cloud computing.
• Zone: A group of interconnected physical hosts with hypervisors controlled by the same OpenNebula.
1.3.3 OpenNebula Management

- **ACL**: Access Control List. Check the managing ACL rules guide.
- **oneadmin**: Special administrative account. See the Users and Groups guide.
- **User**: An OpenNebula user account.
- **Group**: A group of Users.
- **Federation**: Several OpenNebula instances can be configured as zones.
CHAPTER TWO

RELEASE NOTES 5.6

2.1 What’s New in 5.6

OpenNebula 5.6 (Blue Flash) is the fourth major release of the OpenNebula 5 series. A significant effort has been applied in this release to enhance features introduced in 5.4 Medusa, while keeping an eye in implementing those features more demanded by the community. A massive set of improvements happened at the core level to increase robustness and scalability, and a major refactor happened in the vCenter integration, particularly in the import process, which has been streamlined. Virtually every component of OpenNebula has been reviewed to target usability and functional improvements, trying to keep API changes to a minimum to avoid disrupting ecosystem components.

In this release several development efforts have been invested in making OpenNebula even better for large scale deployments. This improvements includes both, changes in OpenNebula core to better handle concurrency as well as refined interfaces. Sunstone dashboard has been redesigned to provided sensible information in a more responsive way. Sunstone also features some new styling touches here and there, and it has been updated to version 5 of Fontawesome.

Blue Flash also includes several quality of life improvements for end-users. In particular, it is now possible to schedule periodic actions on VMs. Want to shutdown your VM every Friday at 5p.m. and start it on Monday 7p.m. just before
work... We got you covered. Also, don’t want accidentally terminate that important VM or want to freeze a Network; now you can set locks on common resources to prevent actions to be performed on them.

5.6. ends the major redesign on the vCenter driver started in 5.4. The new integration with vCenter features stability and performance improvements, as well as important new features like a extended multicloud support, marketplace integration to easily provide content to your cloud and a redesigned importation workflow with new Sunstone tabs as well as a new CLI.

New integrations also bring Docker management. Any OpenNebula cloud can import from the marketplace a VM prepared to act as docker engine, allowing the deployment of Docker applications on top. Also, an integration with Docker Machine is available to seamlessly manage docker engines without having to interact with OpenNebula APIs or interfaces.

Following our tradition this OpenNebula release is named after NGC 6905, also known as the Blue Flash Nebula, a planetary nebula in the constellation Delphinus. It was discovered by William Herschel in 1784.

OpenNebula 5.6 Blue Flash is considered to be a stable release and as such it is available to update production environments.

In the following list you can check the highlights of OpenNebula 5.6 (a detailed list of changes can be found here):

2.1.1 OpenNebula Core

- **Program Periodic VM actions**, the user can schedule periodic actions to be performed regularly in a VM.
- **Lock resources**, the user can lock resources (VMs, images or networks) to prevent unintended operations.
- **Create as uid/gid**, users can define the final owner and/or group for a VM when creating it. See more information here.
- **Improved Monitoring**, several synchronization points have been removed from one to improve concurrency in the monitoring process. Also database connections are now configurable to allow more parallel access to the database.
- **Default permission for VDC ACLs**, administrator can specify the default permission for the automatic ACLs created when a resource is added to a VDC. This can be configured in oned.conf.
- **More IO throttling attributes**, more attributes to define IO throttling support into disk section. See more information here.
- **Minor Raft enhancements**, it now includes a better purge algorithm, improved timeout control as well as extended information to check out the health of the cluster.
- **Support to set CPU model**, the CPU model can be now set. Available modes are obtained through monitor, and stored in the hosts.
- **API request logs**, log format supports a configurable number of characters for API call parameters.
• **Recover Followers easily**, when a follower falls out of the recovery window, it can be reset with `onezone reset-server` command. You still need to manually backup/recover the database. Detailed recovery process here.

• **Running quotas for vms**, when a vm changes his state, OpenNebula increase or decrease the vms quotas for the user or group. Detailed new quotas here.

2.1.2 Storage

• **Deploy the images wherever you want**, we have added the possibility to select different deployment modes for Image datastores. For example the same Ceph Image can be used directly from the pool (default ceph mode) or run from the hypervisor local storage (ssh mode). Check this guide info for more info.

• **Shared Filesystem datastores** can be combined with the host local storage (ssh mode), more info in this guide.

2.1.3 Networking

• Better support for **security group** rules with a large number of ports. See configuration options here.

• **Open vSwitch** rules for the ARP/MAC/IP spoofing filters were refactored.

• New **Open vSwitch on VXLAN** driver. Driver ovswitch_vxlan.

• New **Bridged driver** that supports managed Linux bridges more info.

2.1.4 Authentication

• **Server Groups for LDAP driver**, when configuring your LDAP driver you can define *availability groups* to reduce the number of authentication requests sent to the LDAP servers, more info.

2.1.5 Hybrid Clouds

• **One to One**, the users will can deploying VMs on a remote OpenNebula from local OpenNebula. Driver one-to-one.

2.1.6 Scheduler

• **Memory system datastore scale**, This factor scales the VM usage of the system DS with the memory size. Scheduler configuration.

2.1.7 Sunstone

• **New dashboard**, intuitive, fast and light. The new dashboard will perform better on large deployments.

• **KVM and vCenter more united than ever**, a single view to control the two hypervisors. Completely customizable views.

• **Scheduled Actions** can now be defined in VM Template create and instantiate dialogs. More info.

• **New global configurations**, To be able to customize Sunstone even more, there are new features in the yamls.

• **Disk resize in the cloud view**. Now you can resize a disk as a user cloud.

• **Quotas in cloud view**. Quotas are shown in Cloud view, and marked red when exceeded.

2.1. What's New in 5.6
• **Display quotas in Cloud View**, the end-user can see his quotas in real time.
• **Turkish language (TR)**, now in Sunstone.
• **Icons makeover**, Font Awesome has been updated to latest version!
• **Timeout option for xmlrpc calls**, you can add this new option inside sunstone-server.conf, now it’s possible to configure the timeout of OpenNebula XMLRPC for all operations from Sunstone.
• **Configurable ‘Keep me logged in’**, this option now is configurable in sunstone-server.conf.

2.1.8 vCenter

• **Multiple cluster network support**, now it is possible to import networks belonging to more than 1 cluster with a better management, also you won’t see duplicated networks anymore.
• **vCenter cluster migration**, migrate your VMs between vCenter clusters with OpenNebula.
• **vCenter Marketplace**, now it’s available the HTTP and S3 Marketplaces for vCenter datastores.
• **OnevCenter Import tool**: Redesign of the new onevcenter import tool, you can easily import any vCenter resource, including bulk importation see vCenter import tool.

2.1.9 Application Containerization

• **Docker Appliance**, a new image in the Marketplace (available for KVM and vCenter) brings a Docker Engine pre-installed and the contextualization packages configured to create Docker Hosts with a single click.
• **Docker Machine integration**, enabling provision and management of remote Docker hosts with Docker Machine on your OpenNebula cloud

2.1.10 API & CLI

• **zone show**: users can view all information of HA servers with the option -x. The Zone::info_extended() method exposes this functionality to be used by other tools (only in Ruby OCA).

2.2 Resolved Issues in 5.6.1

A complete list of solved issues for 5.6.1 can be found in the [project development portal](#).
The following new features has been backported to 5.6.1:

• List subcommands use pagination when in an interactive shell, the default pager is set to less but it can be customize through `ONE_PAGER` environment variable.
• Order of elements in list API calls (e.g. as in onevm list) can be selected (ascending or descending), see the group configuration guide for details.
• XMLRPC calls can report the client IP and PORT, see XML-RPC Server Configuration for details.
• New quotas for VMS allow you to configure limits for VMs “running”, see quotas for more details.
• Update Host hook triggers to include all possible states, the states are define here.
• ‘onezone set’ should allow temporary zone changes. See onezone documentation.
• The Virtual Machines that are associated to a Virtual Router have all actions allow except nic-attach/dettach. see vrouter documentation for more details.
• Added information about vcenter_driver.conf See vCenter driver for more details.

The following issues has been solved in 5.6.1:
• User quotas error.
• Migrate vCenter machines provide feedback to oned.
• Fixed problem migrating vCenter machines to a cluster with a lot of ESX.
• Improve feedback for ‘mode’ option in Sunstone server.
• Accounting data does not display.
• Spurious syntax help on onehost delete.
• No way for hide Lock/Unlock button for VM in Sunstone view.
• Fix for fs_lvm driver when live migrating with shared devices.
• Update LDAP driver to use new escaping functionality (and issue).
• Start script base64 enconding fails when using non utf8 characters.
• Error when creating a vnet from Sunstone using advanced mode.
• Restricted attributes not enforced on attach disk operation.
• Improve the dialog when attach nic or instanciated vm in network tab.
• VNC on ESXi Can Break Firewall.
• Slow monitoring of the live migrating VMs on destination host.
• onehost sync should ignore vCenter hosts.
• NIC Model is ignored on VM vCenter Template.
• Unable to query VMs with non ASCII character.
• vCenter unimported resources cache not working as expected.
• Wild importation from vCenter host refactor.
• Removing CD-ROM from vCenter imported template breaks the template.
• Error with restricted attributes when instantiating a VM.
• Onevcenter cli tool few improvements and examples added.
• OPENNEBULA_MANAGED deleted when updating a VM Template.
• Ceph disk-saveas doesn’t respect snapshot ID.
• SSH TM disk-saveas doesn’t respect snapshot ID.
• Unable to update the Running Memory quota.
• Monitoring VMs fails when there is not datastore associated.

2.3 Sunstone Note

In this release, there is the feature of hiding the lock and unlock buttons in this resources: Template, VM, Image, MarketPlace, Network and VMGroup. It is enough to add these lines to each of these resources:
2.4 Platform Notes

This page will show you the specific considerations at the time of using an OpenNebula cloud, according to the different supported platforms.

This is the list of the individual platform components that have been through the complete OpenNebula Quality Assurance and Certification Process.

2.4.1 Certified Components Version

Front-End Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RedHat Enterprise Linux</td>
<td>7</td>
<td>Front-End Installation</td>
</tr>
<tr>
<td>Ubuntu Server</td>
<td>14.04 (LTS), 16.04 (LTS), 18.04 (LTS)</td>
<td>Front-End Installation</td>
</tr>
<tr>
<td>CentOS</td>
<td>7</td>
<td>Front-End Installation</td>
</tr>
<tr>
<td>Debian</td>
<td>9</td>
<td>Front-End Installation</td>
</tr>
<tr>
<td>MariaDB or MySQL</td>
<td>Version included in the Linux distribution</td>
<td>MySQL Setup</td>
</tr>
<tr>
<td>SQLite</td>
<td>Version included in the Linux distribution</td>
<td>Default DB, no configuration needed</td>
</tr>
<tr>
<td>Ruby Gems</td>
<td>Versions installed by packages and install_gems utility</td>
<td>front-end installation</td>
</tr>
<tr>
<td>Corosync+Pacemaker</td>
<td>Version included in the Linux distribution</td>
<td>Front-end HA Setup</td>
</tr>
</tbody>
</table>

vCenter Nodes

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter</td>
<td>5.5/6.0/6.5, managing ESX 5.5/6.0/6.5</td>
<td>vCenter Node Installation</td>
</tr>
</tbody>
</table>

KVM Nodes

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RedHat Enterprise Linux</td>
<td>7</td>
<td>KVM Driver</td>
</tr>
<tr>
<td>Ubuntu Server</td>
<td>14.04 (LTS), 16.04 (LTS), 18.04 (LTS)</td>
<td>KVM Driver</td>
</tr>
<tr>
<td>CentOS</td>
<td>7</td>
<td>KVM Driver</td>
</tr>
<tr>
<td>Debian</td>
<td>9</td>
<td>KVM Driver</td>
</tr>
<tr>
<td>KVM/Libvirt</td>
<td>Support for version included in the Linux distribution. For CentOS/RedHat the packages from qemu-ev are used.</td>
<td>KVM Node Installation</td>
</tr>
</tbody>
</table>
Open Cloud Networking Infrastructure

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ebtables</td>
<td>Version included in the Linux distribution</td>
<td>Ebtables</td>
</tr>
<tr>
<td>8021q kernel module</td>
<td>Version included in the Linux distribution</td>
<td>802.1Q VLAN</td>
</tr>
<tr>
<td>Open vSwitch</td>
<td>Version included in the Linux distribution</td>
<td>Open vSwitch</td>
</tr>
<tr>
<td>iproute2</td>
<td>Version included in the Linux distribution</td>
<td>VXLAN</td>
</tr>
</tbody>
</table>

Open Cloud Storage Infrastructure

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSCSI</td>
<td>Version included in the Linux distribution</td>
<td>LVM Drivers</td>
</tr>
<tr>
<td>LVM2</td>
<td>Version included in the Linux distribution</td>
<td>LVM Drivers</td>
</tr>
<tr>
<td>Ceph</td>
<td>Hammer (LTS) v0.94, Jewel v10.2.0</td>
<td>The Ceph Datastore</td>
</tr>
</tbody>
</table>

Authentication

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>net-ldap ruby library</td>
<td>0.12.1</td>
<td>LDAP Authentication</td>
</tr>
<tr>
<td>openssl</td>
<td></td>
<td>x509 Authentication</td>
</tr>
</tbody>
</table>

Cloud Bursting

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>aws-sdk</td>
<td>2.5.10</td>
<td>Amazon EC2 Driver</td>
</tr>
<tr>
<td>azure</td>
<td>0.7.9</td>
<td>Azure Driver</td>
</tr>
<tr>
<td>one-to-one</td>
<td>1.0.0</td>
<td>OpenNebula Driver</td>
</tr>
</tbody>
</table>

Application Containerization

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docker</td>
<td>18.03.0-ce</td>
</tr>
<tr>
<td>Docker Machine</td>
<td>0.13.0</td>
</tr>
<tr>
<td>Appliance OS</td>
<td>Ubuntu 16.04</td>
</tr>
</tbody>
</table>

Sunstone

<table>
<thead>
<tr>
<th>Browser</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrome</td>
<td>61.0 - 67.0</td>
</tr>
<tr>
<td>Firefox</td>
<td>59.0 - 61.0</td>
</tr>
<tr>
<td>IE</td>
<td>11.0</td>
</tr>
</tbody>
</table>
Note: For Windows desktops using Chrome or Firefox you should disable the option touch-events of your browser:

Internet Explorer is not supported with the Compatibility Mode enabled, since it emulates IE7 which is not supported.

VMware Cloud on AWS

OpenNebula has been validated and is supported on VMware Cloud on AWS. Customers can contact the support team through the commercial support portal to know specific configuration and limitations.

Note: Generally for all Linux platforms, it is worth noting that gems should be installed with the install_gems, avoiding the platform’s package version.

2.4.2 Certified Infrastructure Scale

A single instance of OpenNebula (ie, a single ‘oned’ process) has been stress tested to cope with 500 hypervisors without performance degradation. This is the maximum recommended configuration for a single instance, and depending on the underlying configuration of storage and networking mainly, it is recommended to switch to a federated scenario for any larger number of hypervisors.

However, there are several OpenNebula users managing significant higher number of hypervisors (in the order of two thousand) with a single instance, this largely depends as mentioned on the storage, networking and also monitoring configuration.

2.4.3 Frontend Platform Notes

The following applies to all Front-Ends:

- XML-RPC tuning parameters (MAX_CONN, MAX_CONN_BACKLOG, KEEPALIVE_TIMEOUT, KEEPALIVE_MAX_CONN and TIMEOUT) are only available with packages distributed by us as they are compiled with a newer xmlrpc-c library.

- For cloud bursting, a newer nokogiri gem than the one packed by current distros is required. If you are planning to use cloud bursting, you need to install nokogiri >= 1.4.4 prior to run install_gems: # sudo gem install nokogiri -v 1.4.4.

- Only ruby versions >= 1.9.3 are supported.

Ubuntu 18.04 Platform Notes

Essential Ruby library xmlrpc is missing from Ruby 2.4.0 and above. The library is required by many OpenNebula parts and also the CLI tools. To get the missing library, gem xmlrpc needs to be installed via tool install_gems, or the gem command:

```
# sudo gem install xmlrpc
```
Ubuntu 14.04 Platform Notes

Package ruby-ox shouldn’t be installed as it contains a version of the gem incompatible with the CLI

CentOS 7.0 Platform Notes

This distribution lacks some packaged ruby libraries. This makes some components unusable until they are installed. In the front-end, just after package installation these commands should be executed as root to install extra dependencies:

```bash
# /usr/share/one/install_gems
```

When using Apache to serve Sunstone, it is required that you disable or comment the `PrivateTMP=yes` directive in `/usr/lib/systemd/system/httpd.service`.

There is an automatic job that removes all data from `/var/tmp/`, in order to disable this, please edit the `/usr/lib/tmpfiles.d/tmp.conf` and remove the line that removes `/var/tmp`.

There is a bug in `libvirt` that prevents the use of the save/restore mechanism if `cpu_model` is set to `host-passthrough` via RAW. The work around if needed is described in this issue.

Debian 8

Make sure that the packages `ruby-treetop` and `treetop` are not installed before running `install_gems`, as the version of `treetop` that comes packaged in Debian 8 is incompatible with OpenNebula. OneFlow requires a version `>= 1.6.3` for treetop, packages distributed with Debian 8 includes an older version (1.4.5).

2.4.4 Nodes Platform Notes

The following items apply to all distributions:

- Since OpenNebula 4.14 there is a new monitoring probe that gets information about PCI devices. By default it retrieves all the PCI devices in a host. To limit the PCI devices that it gets info and appear in `onehost show` refer to `kvm_pci_passthrough`.

- When using qcow2 storage drivers you can make sure that the data is written to disk when doing snapshots setting its `cache` parameter to `writethrough`. This change will make writes slower than other cache modes but safer. To do this edit the file `/etc/one/vmm_exec/vmm_exec_kvm.conf` and change the line for `DISK`:

```bash
DISK = [ driver = "qcow2", cache = "writethrough" ]
```

CentOS/RedHat 7.0 Platform Notes

Ruby Dependencies

In order to install ruby dependencies, the Server Optional channel needs to be enabled. Please refer to RedHat documentation to enable the channel.

Alternatively, use CentOS 7 repositories to install ruby dependencies.

2.4. Platform Notes
Libvirt Version

The libvirt/qemu packages used in the testing infrastructure are the ones in the qemu-ev repository. To add this repository you can install the following packages:

```
# yum install centos-release-qemu-ev
# yum install qemu-kvm-ev
```

Disable PolicyKit for Libvirt

It is recommended that you disable PolicyKit for Libvirt:

```
$ cat /etc/libvirt/libvirtd.conf
...
auth_unix_ro = "none"
auth_unix_rw = "none"
unix_sock_group = "oneadmin"
unix_sock_ro_perms = "0770"
unix_sock_rw_perms = "0770"
...
```

2.4.5 Unsupported Platforms Notes

| Warning: | Use the following distributions at your own risk. They are not officially supported by OpenNebula. |

CentOS 6.5 Usage Platform Notes

- As a front-end, because home directory of oneadmin is located in /var, it violates SELinux default policy. So in ssh passwordless configuration you should disable SELinux by setting SELINUX=disabled in /etc/selinux/config.
- As a node, to accomplish disk hotplugging:
 - to accomplish disk hotplugging, disks need to be attached through SCSI, so their images should have a DEV_PREFIX="sd"
 - to accomplish disk hotplugging, VM template that will permit SCSI disk attaches afterwards needs to have an explicitly defined SCSI controller:

```
RAW=[TYPE = "kvm",
    DATA = "<devices><controller type='scsi' index='0' model='virtio-scsi'></
    <controller></devices>" ]
```

- due to libvirt version <= 0.10.2, there is a bug in libvirt/qemu attach/detach nic→functionality that prevents the reuse of net IDs. This means that after a→successful attach/detach NIC, a new attach will fail.

Installing on ArchLinux

OpenNebula is available at the Arch User Repository (AUR), please check the opennebula package page.
Installing on Gentoo

There is an ebuild contributed by Thomas Stein in the following repository:
https://github.com/himbeere/opennebula

Still, if you want to compile it manually you need to install the xmlrpc-c package with threads support, as:

```
USE="threads" emerge xmlrpc-c
```

Installing on Devuan

Packages for Devuan Jessie 1.0 Beta are provided by Alberto Zuin. You can download them at:
http://downloads.opennebula.org/extra/packages/devuan/

2.5 Compatibility Guide

This guide is aimed at OpenNebula 5.6.x users and administrators who want to upgrade to the latest version. The following sections summarize the new features and usage changes that should be taken into account, or prone to cause confusion. You can check the upgrade process in the following section

Visit the Features list and the Release Notes for a comprehensive list of what’s new in OpenNebula 5.6.

2.5.1 To consider only if upgrading from OpenNebula 5.x.x

2.5.2 OpenNebula Administrators

Fine grain tuning for MONITOR_INTERVAL

The MONITOR_INTERVAL configuration has been split in multiple attributes to fine tune the monitoritzation of each component. If you have changed this value you need to adjust the associated new attribute, most probably MONITOR_INTERVAL_HOST.

New behavior of attributes

- Now empty attributes are just ignored or removed when merged. In prior versions produce a parse error or the old value was maintained, so it was impossible to remove attributes from Sunstone.

```
ATTR = [ ]
```

- When creating an image DEFAULT_IMAGE_PERSISTENT_NEW can be overridden by the PERSISTENT value of the new image. Sunstone and CLI provides a way to set this value to override the user/group default.

Security Groups

When creating a VM, OpenNebula will check access to all the security groups involved in the request. This include security groups explicitly set in the NIC as well as security groups in the VNET and its ARs.
Image LOCK state

When an operation is being performed on an image it is in LOCK state. Since 5.6, this LOCK state also implies an object lock to prevent for example deleting an image while it is being copied. This means that you may need to manually unlock the image if you want to perform any operation over it (e.g. chown or chmod) while it is being copied.

Precedence of Datastore and Image Attributes & Marketplace import

The value precedence has been changed to VM Template (DISK) > Image > Datastore for the following attributes: CLONE_TARGET, LN_TARGET, DISK_TYPE & DRIVER.

Also images imported from a Marketplace do not follow the DRIVER attribute of the MarketPlaceApp when it may conflict with that defined in the Datastore.

Ruby OCA Update function

The behavior of resource update has changed. If the new template is nil, the function will return a XMLRPC error.

Remote scripts configuration

Configuration files from deep inside the remote scripts directory structure /var/lib/one/remotes/ have been moved into dedicated directory /var/lib/one/remotes/etc/. Check all the files on the new path, and apply any necessary changes to your environment.

Open vSwitch

The ARP Cache Poisoning prevention rules has been more integrated into the filters logic and now works as another layer of security only if FILTER_IP_SPOOFING and/or FILTER_MAC_SPOOFING is enabled for the particular Virtual Network. Support for legacy firewall (BLACK_PORTS_TCP, BLACK_PORTS_UDP, ICMP) has been removed.

Network drivers

If the KVM virtual network is defined with PHYDEV parameter, the missing bridge is created on demand and destroyed when the physical interface is the only one left. This behavior can be changed globally via option keep_empty_bridge inside /var/lib/one/remotes/etc/vnm/OpenNebulaNetwork.conf, or per virtual network via CONF template attribute. If a bridge was initially created outside the OpenNebula with some configuration (e.g., assigned IP address), this state can be lost with the OpenNebula default settings. Applies to all KVM network drivers except the dummy.

Note also that the “Bridged” modes are now mapped to the new driver bridge in Sunstone. You can still pick the old dummy driver by choosing a custom driver.

LVM drivers

LVM Drivers now zero the space when the volume is allocated, resized, and released. This may result in slower processing of the virtual machine states PROLOG, DISK_RESIZE, and EPILOG.
HA

Raft hook `vip.sh` now controls the OpenNebula Flow and Gate services via the service manager commands. Services are started only if they are enabled in the service manager (this would lead to start of the services on boot in the standalone deployment).

Marketplace

MD5 attribute from marketplace app images will be carried to the OpenNebula image as `FROM_APP_MD5` instead of `MD5` as previous versions. This change won’t be automatically upgraded, so if needed it must be done manually. This change prevents errors exporting these images as the file might be changed (for instance, if it has been made persistent) and hence the MD5 checksum will yield a different result.

Image allocate without checks for datastore capacity

Command `oneimage create` accepts a new parameter `--no_check_capacity` to specify if you want OpenNebula to avoid checking datastore capacity.

Snapshots do not reuse snapshot IDs

The snapshots structure stores the next snapshot ID. So, a new snapshot doesn’t reuse an old snapshot ID, even when some are removed.

2.5.3 Developers and Integrators

Authentication drivers

Authentication drivers now accept parameters only on the standard input as the XML document; all custom authentication drivers need to be modified to follow this way. Check the authentication driver documentation.

2.5.4 vCenter

Imported Names

Due to the new onevcenter tool and driver changes, OpenNebula names of imported vCenter resources are different. See new vCenter import tool.

In previous OpenNebula versions imported names were generated using a lot of data (vCenter host, long hash code, datacenter...) that had led to a situation in which OpenNebula had very long names, this made cloud administration difficult in some cases.

That is why you can import right now any vCenter resource by default with the same name, just like the one showed on vSphere application. In case of name collision, OpenNebula will resolve the situation adding 2 identification bytes at the end of the name.

```
You have already Imported a OpenNebula host called Cluster
You want to import another from other vCenter host with the same name

First OpenNebula Host with same name : Cluster
Second OpenNebula Host with same name: Cluster-2c
```
Imported Networks

It is possible to have imported Port Groups or Distributed Portgroups pointing to more than 1 cluster by default. The old behaviour of OpenNebula allowed to have one OpenNebula network per OpenNebula cluster/vCenter cluster, this has changed by default.

2.5.5 Sunstone

New view system

The directory hierarchy in /etc/one/sunstone-views/ has changed. Now, in sunstone-views there should be directories (KVM, vCenter, mixed) that contain the views configuration (yaml).

sunstone-server.conf has the mode parameter, with which we will select the directory of the views we want.

Yamls changes

If you are interested in adding a VMGroup or DS in vCenter Cloud View, you should make the following changes in /etc/one/sunstone-views/cloud_vcenter.yaml:

- https://github.com/OpenNebula/one/commit/d019485e3d69588a7645fe30114c3b7c135d3065
- https://github.com/OpenNebula/one/commit/efdffc4723aae3d2b3f524a1e2bb27c81e43b13d

Sunstone addons

Sunstone now uses directory /var/lib/one/sunstone/ to store the preprocessed frontend source files. If Sunstone is running under the web server (e.g., via Passenger), additional directory permissions may be required for the web server identity to be able to access the /var/lib/one/sunstone/ directory. Please see Configuring Sunstone for Large Deployments.

2.6 Known Issues

2.6.1 CLI

- #781 Different ruby versions need different time formats
- #841 Wrong headers when output is piped for oneacct and oneshowback

2.6.2 Core & System

- #937 An image can be used twice by a VM, but this breaks the used/ready logic
- #1243 Hybrid VMs in poweroff -> terminate are not removed from public cloud provider
- #1184 PUBLIC_CLOUD variables do not accept ‘,’
- #763 If an user removes USE or MANAGE rights from VM it cannot access it anymore
- #2260 Re-evaluate the actions that can be supported by a Virtual Router
- #1815 Remove resource references from VDC when erased
- #1255 MANAGE right requirement on image for disk snapshot unjustified with ceph
• #1635 Do not instantiate VM if IP is allocated
• #1320 Implement call to let raft know that a follower’s db has been updated
• #1312 VM Save As - Disk advanced params not saved to new template
• #1395 Deleting a group that owns images used by running VMs breaks those VMs
• #2284 Quotas assignment error

2.6.3 Drivers - Network

• #792 Review the Open vSwitch flows
• #954 NIC defaults not honoured in attach NIC

2.6.4 Drivers - Storage

• #944 CEPH_HOST not IPv6 friendly
• #2269 Cloning images from one Ceph datastore to another
• #2246 VMs created from images inside a Ceph datastore with EC_POOL_NAME are not created in that EC pool
• #1286 Can not flatten image without losing latest state
• #1955 Only 1 Ceph monitor added in libvirt XML when Ceph DISK IMAGE attached (hot-add)

2.6.5 Drivers - VM

• #1157 Signal timeouts in EC2 driver
• #1309 Improve exception handling azure and ec2 drivers

2.6.6 Drivers - Auth

• #1761 RAFT sync leads to Duplicate key on case sensitive login

2.6.7 Packages

• #1703 Can’t attach disk after detaching disk
• #1650 Discrepancies between Opennebula’s tarball and the the Github one
• #820 Debian package ruby-opennebula doesn’t place files into GEM_PATH
• #1225 OneGate Server package is not provided needed gems or install_gems script

2.6.8 OneFlow

• #917 oneflow and oneflow-template ignore the no_proxy environment variable
• #668 Scheduled policy start_time cannot be defined as a POSIX time number
• #1077 Throw an error if a template update is invalid

2.6. Known Issues
2.6.9 Marketplace

- #1159 DISPOSE=YES in market_mad/remotes/http/import is not honored
- #1666 Marketplace driver expects always an image to import

2.6.10 Scheduler

- #629 If more than one scheduled actions fit in a scheduler cycle, the behavior is unexpected

2.6.11 Sunstone

- #636 if syslog enabled disable the logs tab in the VM detailed view
- #916 Sunstone ignores the no_proxy environment variable
- #1532 Sunstone is killed by OOM Killer when uploading large images

2.6.12 vCenter

- #1350 Template delete recursive operation of templates instantiated as persistent does not remove images from the vcenter datastores. Currently these files must be delete manually
- #2230 vCenter driver migrate feedback
- #2275 Remove disk not affected by snap on vCenter
- #2254 spurios syntax help on onehost delete
- #2084 vCenter Cache thread safe (thin related)

2.7 Acknowledgements

The OpenNebula project would like to thank the community members and users who have contributed to this software release by being active with the discussions, answering user questions, or providing patches for bugfixes, features and documentation.

The SetUID/SetGID functionality for VM Templates is funded by University of Louvain. The Ceph drivers enabling VM disks in the hypervisor local storage are funded by Flexyz B.V.. The new quotas for running VMs and running VMs resources are funded by CA Technologies.
3.1 What’s a HotFix Release?

A hotfix release is a type of incremental release that fixes specific issues.

While OpenNebula is fully open source, packages from hotfix incremental versions are not publicly released, and are only available for users with an active commercial subscription. However, rest assured that the code is publicly available in the GitHub repository, as is the templates to create packages for the different supported platforms.

Hence, everyone can create their own packages or build OpenNebula from the source code, but only OpenNebula Systems customers have the convenience of pre-created packages in Hotfixes incremental releases.

if you are an OpenNebula Systems customer with an active support subscription you have access to the this hotfix package. Please check your private repository at OpenNebula.pro

3.2 Resolved Issues in 5.6.2

A complete list of solved issues for 5.6.2 can be found in the project development portal.

The following new features has been backported to 5.6.2:

- New option for image datastores to further restrict the system datastores that can be used. This is useful when some system datastores in a cluster can only be used with one image datastore, e.g. use of different pools in Ceph. See link and datastore definition attributes.
- Add support to rename disk snapshots

The following issues has been solved in 5.6.2:

- Fix issue when setting an specific CPU model.
- Fix paginated CLI output for onehost show and oneimage show.
- Monitoring VMs fails when there is not datastore associated.
- Label icons does not displayed.
- Active disk snapshot is missing arrow in Sunstone.
- VCENTER_ESX_HOST fail with DRS in vCenter.
- vCenter datastores with spaces does not work properly.
- tm_mad does not allow disks with brackets.
- vCenter uploader change original filename.
3.3 Sunstone Note

There is the new VM autorefresh feature, activated by default at 10 seconds. If you want to change the autorefresh value, you must add the following line in `vms-tab` in the different views:

```yaml
actions:
    VM.refresh: true
    ...
    VM.menu_labels: true
autorefresh_info: 5000 # ms
```
4.1 Overview

Keeping your OpenNebula up-to-date is very important, as you will receive the latest functionality and more importantly, the latest security patches. It is possible to upgrade to the latest OpenNebula release from earlier versions.

4.1.1 Hypervisor Compatibility

The upgrade procedure can be followed regardless of the hypervisor.

4.1.2 How Should I Read This Chapter

You only need to read this chapter if you are upgrading OpenNebula to a newer release. Make sure you have read the Release Notes and particularly the Compatibility section first.

Upgrading is a sequential procedure. The system will upgrade from the currently installed release to the latest release going through each release (if any). Therefore it’s important to read each section.

After the upgrade procedure you can continue using your upgraded OpenNebula Cloud.

4.2 Upgrading from OpenNebula 5.6.x

This section describes the installation procedure for systems that are already running a 5.6.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide and Release Notes to know what is new in OpenNebula 5.6.

4.2.1 Upgrading a Federation and High Availability

You need to perform the following steps in all the HA nodes and all zones. Note that you need to update all the servers at the same time, not one by one.
4.2.2 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.

Stop OpenNebula

Stop OpenNebula and any other related services you may have running: OneFlow, EC2, and Sunstone. Use preferably the system tools, like `systemctl` or `service` as root in order to stop the services.

4.2.3 Backup

Backup the configuration files located in `/etc/one`. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

```
# cp -r /etc/one /etc/one.$(date +'%Y-%m-%d')
```

4.2.4 Installation of New Version

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the `install_gems` tool, as the new OpenNebula version may have different gem requirements.

Note: If executing `install_gems` you get a message asking to overwrite files for aws executables you can safely answer “yes”.

It is highly recommended not to keep your current `oned.conf`, and update the `oned.conf` file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current `oned.conf` file, read the Compatibility Guide and the complete `oned.conf` 5.6 reference.

4.2.5 Configuration Files Upgrade

If you haven’t modified any configuration files, the package managers will replace the configuration files with their newer versions and no manual intervention is required.

If you have customized any configuration files under `/etc/one` we recommend you to follow these steps regardless of the platform/linux distribution.

1. Backup `/etc/one` (already performed)
2. Install the new packages (already performed)
3. Compare the old and new configuration files: `diff -ur /etc/one.YYYY-MM-DD /etc/one`. Or you can use graphical diff-tools like `meld` to compare both directories, which are very useful in this step.
4. Edit the new files and port all the customizations from the previous version.
5. You should never overwrite the configuration files with older versions.
Note: Configuration files from inside the remote scripts directory structure `/var/lib/one/remotes/` have been moved into dedicated directory `/var/lib/one/remotes/etc/`. Check all the files on the new path, and apply any necessary changes to your environment.

4.2.6 Database Upgrade

Perform the Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Note: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘onedb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```bash
$ onedb upgrade -v --sqlite /var/lib/one/one.db
$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```bash
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap
Local tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file

>>> Running migrators for shared tables
  ...  
>>> Running migrators for local tables
  ...  
  > Done in 41.93s

Database migrated from 4.11.80 to 4.13.80 (OpenNebula 4.13.80) by onedb command.
Total time: 41.93s
```

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it
won’t downgrade databases to previous versions.

4.2.7 Check DB Consistency

After the upgrade is completed, you should run the command `onedb fsck`. First, move the 5.6.x backup file created by the upgrade command to a safe place.

```
$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/
```

Then execute the following command:

```
$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file
```

Total errors found: 0

4.2.8 Reload Start Scripts

Follow this section if you are using a `systemd` base distribution, like CentOS 7+, Ubuntu 16.04+, etc. In order for the system to re-read the configuration files you should issue the following command after the installation of the new packages:

```
# systemctl daemon-reload
```

4.2.9 Update the Drivers

You should be able now to start OpenNebula as usual, running `service opennebula start` as root. At this point, as `oneadmin` user, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

Note: You can skip this step if you are not using KVM hosts, or any hosts that use remove monitoring probes.

4.2.10 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs. As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the `onevm, onevnet, oneimage, oneuser, onehost list` commands. Try also using the `show` subcommand for some resources.
4.2.11 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using `onedb restore -f`
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of `/etc/one` you did to restore your configuration.

4.2.12 Known Issues

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The `set password` statement can be used for this:

```bash
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```

4.3 Upgrading from OpenNebula 5.4.x

This section describes the installation procedure for systems that are already running a 5.4.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the [Compatibility Guide](#) and [Release Notes](#) to know what is new in OpenNebula 5.6.

Warning: OpenNebula 5.4.1 modifies the existing Sunstone views configuration files (`/etc/one/sunstone-views/`) to adjust the column names. Any change made in these files will need to be reapplied after the OpenNebula upgrade.

4.3.1 Upgrading a Federation and High Availability

You need to perform the following steps in all the HA nodes and all zones. Note that you need to update all the servers at the same time, not one by one.

4.3.2 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.

Stop OpenNebula

Stop OpenNebula and any other related services you may have running: OneFlow, EC2, and Sunstone. Use preferably the system tools, like `systemctl` or `service` as root in order to stop the services.
4.3.3 Backup

Backup the configuration files located in /etc/one. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

```bash
$ cp -r /etc/one /etc/one.$(date +'%Y-%m-%d')
```

4.3.4 Installation of New Version

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the install_gems tool, as the new OpenNebula version may have different gem requirements.

Note: If executing install_gems you get a message asking to overwrite files for aws executables you can safely answer “yes”.

It is highly recommended **not to keep** your current oned.conf, and update the oned.conf file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current oned.conf file, read the Compatibility Guide and the complete oned.conf 5.6 reference.

4.3.5 Configuration Files Upgrade

If you haven’t modified any configuration files, the package managers will replace the configuration files with their newer versions and no manual intervention is required.

If you have customized any configuration files under /etc/one we recommend you to follow these steps regardless of the platform/linux distribution.

1. Backup /etc/one (already performed)
2. Install the new packages (already performed)
3. Compare the old and new configuration files: diff -ur /etc/one.YYYY-MM-DD /etc/one. Or you can use graphical diff-tools like meld to compare both directories, which are very useful in this step.
4. Edit the new files and port all the customizations from the previous version.
5. You should **never** overwrite the configuration files with older versions.

Important: Please adjust the XMLRPC_TIMEOUT according to the typical RTT (round-trip-time) of xml-rpc calls across RAFT servers. This value should be 4 or 5 times the average RTT

4.3.6 Database Upgrade

Perform the Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

4.3. Upgrading from OpenNebula 5.4.x
You can upgrade the existing DB with the ‘ondb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Note: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘ondb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```
$ onedb upgrade -v --sqlite /var/lib/one/one.db

$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap
Local tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap

MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'ondb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file

>>> Running migrators for shared tables
...

>>> Running migrators for local tables
...
> Done in 41.93s

Database migrated from 4.11.80 to 4.13.80 (OpenNebula 4.13.80) by onedb command.
Total time: 41.93s
```

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.3.7 Check DB Consistency

After the upgrade is completed, you should run the command onedb fsck.

First, move the 5.4.x backup file created by the upgrade command to a safe place.

```
$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/
```

Then execute the following command:
$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file
Total errors found: 0

4.3.8 Reload Start Scripts

Follow this section if you are using a systemd base distribution, like CentOS 7+, Ubuntu 16.04+, etc.

In order for the system to re-read the configuration files you should issue the following command after the installation of the new packages:

```bash
# systemctl daemon-reload
```

4.3.9 Update the Drivers

You should be able now to start OpenNebula as usual, running `service opennebula start` as root. At this point, as `oneadmin` user, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.3.10 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the `onevm`, `onevnet`, `oneimage`, `oneuser`, `onehost list` commands. Try also using the `show` subcommand for some resources.

4.3.11 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using `onedb restore -f`
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of `/etc/one` you did to restore your configuration.

4.3.12 Known Issues

If the MySQL database password contains special characters, such as `@` or `#`, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The `set password` statement can be used for this:
4.4 Upgrading from OpenNebula 5.2.x

This section describes the installation procedure for systems that are already running a 5.2.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide and Release Notes to know what is new in OpenNebula 5.6.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4.

4.4.1 Upgrading a Federation

If you have two or more 5.2.x OpenNebulas working as a Federation, you need to upgrade all of them. The upgrade for this version has to occur simultaneously on all zones including the master.

The steps to follow are:

1. Stop the MySQL replication in all the slaves and master zone. The MySQL replication is no longer needed.
2. Upgrade the master zone to 5.4 version
3. Upgrade the slaves zones to 5.4 version
4. Replicate the state of the shared tables from the master zone into each slave zone.

During steps 1 and 2 the slave OpenNebula’s can be running, and users can keep accessing them if each zone has a local Sunstone instance. However all the shared database tables (users, groups, ACL…) will not be updated in the slaves zones till step 3 is completed.

To perform the first step, you must stop and reset each slave (and master), remove any configuration attribute for replication in my.cnf file and finally restart mysqld. Please refer to mysql documentation for more details on how to perform this step.

Then follow this section for the master zone. After the master has been updated to 5.6, upgrade each slave zone following this same section.

4.4.2 Upgrading from a High Availability deployment

You need to restore the HA deployment according to the new implementation. Upgrade the active OpenNebula instance as described in this section and then regenerate the HA instances as described in the in the HA guide.

4.4.3 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.
vCenter

Important: Read this section carefully if you are using vCenter!

If you are using vCenter you will need to follow some extra steps while **still running OpenNebula 5.2**.

Follow the vCenter upgrade 5.2 to 5.4 Pre-migration phase.

Stop OpenNebula

Stop OpenNebula and any other related services you may have running: OneFlow, EC2, and Sunstone. Use preferably the system tools, like `systemctl` or `service` as `root` in order to stop the services.

4.4.4 Backup

Backup the configuration files located in `/etc/one`. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

```
# cp -r /etc/one /etc/one.$(date +'%Y-%m-%d')
```

4.4.5 Installation of New Version

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the `install_gems` tool, as the new OpenNebula version may have different gem requirements.

Note: If executing `install_gems` you get a message asking to overwrite files for aws executables you can safely answer “yes”.

It is highly recommended **not to keep** your current `oned.conf`, and update the `oned.conf` file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current `oned.conf` file, read the Compatibility Guide and the complete oned.conf reference for 5.4 and 5.6 versions.

4.4.6 Configuration Files Upgrade

If you haven’t modified any configuration files, the package managers will replace the configuration files with their newer versions and no manual intervention is required.

If you have customized **any** configuration files under `/etc/one` we recommend you to follow these steps regardless of the platform/linux distribution.

1. Backup `/etc/one` (already performed)
2. Install the new packages (already performed)
3. Compare the old and new configuration files: `diff -ur /etc/one.YYYY-MM-DD /etc/one`. Or you can use graphical diff-tools like `meld` to compare both directories, which are very useful in this step.
4. Edit the **new** files and port all the customizations from the previous version.
5. You should **never** overwrite the configuration files with older versions.
EC2 Configuration File

The credentials and capacity from ec2 zones have been moved from its configuration file to the template of the host. You don’t need to update the file `/etc/one/ec2_driver.conf` with the data from the old file. To make this data available to the migrator copy the old configuration file to `/etc/one/ec2_driver.conf.old`:

```
cp /etc/one.$(date +%Y-%m-%d)/ec2_driver.conf /etc/one/ec2_driver.conf.old
```

After migration you can delete the old file:

```
rm /etc/one/ec2_driver.conf.old
```

4.4.7 Database Upgrade

vCenter Migration Tool

Important: Read this section carefully if you are using vCenter!

If you are using vCenter you will need to run the vCenter migration tool before running the `onedb upgrade` command from the next section.

Follow the _vCenter upgrade 5.2 to 5.4 Migration phase._

Perform the Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Note: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Note: For environments in a Federation: Before upgrading the master, make sure that all the slaves have the MySQL replication paused.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘onedb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```
$ onedb upgrade -v --sqlite /var/lib/one/one.db

$ onedb upgrade -v -- mysql -h localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap
Local tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap

MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file

>>> Running migrators for shared tables
...

>>> Running migrators for local tables
...
> Done in 41.93s

Database migrated from 4.11.80 to 4.13.80 (OpenNebula 4.13.80) by onedb command.
Total time: 41.93s

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.4.8 Check DB Consistency

After the upgrade is completed, you should run the command `onedb fsck`.

First, move the 5.2.x backup file created by the upgrade command to a safe place.

```
$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/
```

Then execute the following command:

```
$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
```

MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file

Total errors found: 0

4.4.9 Recreate the Federation salves

This section applies only to environments working in a Federation.

For the **master zone**: Snapshot the shared tables using the onedb tool. Please refer to the federation guide for more details.

For a **slave zone**: Each slave should be already configured, i.e. `oned.conf` should include the ZONE_ID for the slave, auth files present and OpenNebula updated to last version. You only need to restore the shared tables saved in the previous step and start the slave zone.

4.4. Upgrading from OpenNebula 5.2.x
4.4.10 Reload Start Scripts

Follow this section if you are using a *systemd* base distribution, like CentOS 7+, Ubuntu 16.04+, etc.

In order for the system to re-read the configuration files you should issue the following command after the installation of the new packages:

```
# systemctl daemon-reload
```

4.4.11 Update the Drivers

You should be able now to start OpenNebula as usual, running `service opennebula start as root`. At this point, as oneadmin user, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.4.12 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the `onevm`, `onevnet`, `oneimage`, `oneuser`, `onehost list` commands. Try also using the `show` subcommand for some resources.

4.4.13 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using `onedb restore -f`
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of `/etc/one` you did to restore your configuration.

4.4.14 Known Issues

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The `set password` statement can be used for this:

```
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```
4.5 Upgrading from OpenNebula 5.0.x

This section describes the installation procedure for systems that are already running a 5.0.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide and Release Notes to know what is new in OpenNebula 5.6.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that upgrading from OpenNebula < 5.2 to OpenNebula 5.4 is NOT supported. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

4.5.1 Upgrading a Federation

If you have two or more 5.0.x OpenNebulas working as a Federation, you need to upgrade all of them. The upgrade does not have to be simultaneous, the slaves can be kept running while the master is upgraded.

The steps to follow are:

1. Stop the MySQL replication in all the slaves
2. Upgrade the master OpenNebula
3. Upgrade each slave
4. Resume the replication

During the time between steps 1 and 4 the slave OpenNebulas can be running, and users can keep accessing them if each zone has a local Sunstone instance. There is however an important limitation to note: all the shared database tables will not be updated in the slaves zones. This means that new user accounts, password changes, new ACL rules, etc. will not have any effect in the slaves. Read the federation architecture documentation for more details.

It is recommended to upgrade all the slave zones as soon as possible.

To perform the first step, pause the replication in each slave MySQL:

```
mysql> STOP SLAVE;
mysql> SHOW SLAVE STATUS\G
```

```
Slave_IO_Running: No
Slave_SQL_Running: No
```

Then follow this section for the master zone. After the master has been updated to 5.6, upgrade each slave zone following this same section.

4.5.2 Upgrading from a High Availability deployment

The recommended procedure to upgrade two OpenNebulas configured in HA is to follow the upgrade procedure in a specific order. Some steps need to be executed in both servers, and others in just the active node. For the purpose of this section, we will still refer to the active node as such even after stopping the cluster, so we run the single node steps always in the same node:

- *Preparation* in the active node.
OpenNebula 5.6 Introduction and Release Notes, Release 5.6.2

- **Backup** in the active node.
- Stop the cluster in the active node: `pcs cluster stop`.
- **Installation** in both nodes. Before running `install_gems`, run `gem list > previous_gems.txt` so we can go back to those specific `sinatra` and `rack` gems if the `pcsd` refuses to start.
- **Configuration Files Upgrade** in the active node.
- **Database Upgrade** in the active node.
- **Check DB Consistency** in the active node.
- **Reload Start Scripts in CentOS 7** in both nodes.
- Start the cluster in the active node.

4.5.3 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.

Stop OpenNebula and any other related services you may have running: OneFlow, EC2, and Sunstone. Use preferably the system tools, like `systemctl` or `service` as `root` in order to stop the services.

4.5.4 Backup

Backup the configuration files located in `/etc/one`. You don’t need to do a manual backup of your database, the `onedb` command will perform one automatically.

```bash
# cp -r /etc/one /etc/one.$(date +'%Y-%m-%d')
```

4.5.5 Installation

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the `install_gems` tool, as the new OpenNebula version may have different gem requirements.

Note: If executing `install_gems` you get a message asking to overwrite files for aws executables you can safely answer “yes”.

It is highly recommended **not to keep** your current `oned.conf`, and update the `oned.conf` file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current `oned.conf` file, read the Compatibility Guide and the complete oned.conf reference for 5.0 and 5.6 versions.

4.5.6 Configuration Files Upgrade

If you haven’t modified any configuration files, the package managers will replace the configuration files with their newer versions and no manual intervention is required.

If you have customized **any** configuration files under `/etc/one` we recommend you to follow these steps regardless of the platform/linux distribution.

4.5. Upgrading from OpenNebula 5.0.x
1. Backup /etc/one (already performed)

2. Install the new packages (already performed)

3. Compare the old and new configuration files: diff -ur /etc/one.YYYY-MM-DD /etc/one. Or you can use graphical diff-tools like meld to compare both directories, which are very useful in this step.

4. Edit the new files and port all the customizations from the previous version.

5. You should never overwrite the configuration files with older versions.

4.5.7 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Warning: For environments in a Federation: Before upgrading the master, make sure that all the slaves have the MySQL replication paused.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘onedb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```
$ onedb upgrade -v --sqlite /var/lib/one/one.db
```

```
$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap
Local tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap

MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file

>>> Running migrators for shared tables
   ...

>>> Running migrators for local tables
   ...
   > Done in 41.93s
```

(continues on next page)
Database migrated from 4.11.80 to 4.13.80 (OpenNebula 4.13.80) by onedb command.
Total time: 41.93s

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.5.8 Check DB Consistency

After the upgrade is completed, you should run the command `onedb fsck`.

First, move the 5.0.x backup file created by the upgrade command to a safe place.

```
$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/
```

Then execute the following command:

```
$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file
Total errors found: 0
```

4.5.9 Resume the Federation

This section applies only to environments working in a Federation.

For the master zone: This step is not necessary.

For a slave zone: The MySQL replication must be resumed now.

Warning: Do not copy the server-id from this example, each slave should already have a unique ID.

- Start the slave MySQL process and check its status. It may take a while to copy and apply all the pending commands.

```
mysql> START SLAVE;
mysql> SHOW SLAVE STATUS\G
```

The SHOW SLAVE STATUS output will provide detailed information, but to confirm that the slave is connected to the master MySQL, take a look at these columns:

```
Slave_IO_State: Waiting for master to send event
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
```
4.5.10 Reload Start Scripts in CentOS 7

In order for the system to re-read the configuration files you should issue the following command after the installation of the new packages:

```
# systemctl daemon-reload
```

4.5.11 Update the Drivers

You should be able now to start OpenNebula as usual, running `service opennebula start` as root. At this point, as oneadmin user, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.5.12 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the onevm, onevnet, oneimage, oneuser, onehost `list` commands. Try also using the `show` subcommand for some resources.

4.5.13 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using ‘onedb restore -f’
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of /etc/one you did to restore your configuration.

4.5.14 Known Issues

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The `set password` statement can be used for this:

```
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```

4.6 Upgrading from OpenNebula 4.14.x

This section describes the installation procedure for systems that are already running a 4.14.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version
upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide for 5.0 and 5.6, and the Release Notes to know what is new in OpenNebula 5.6.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that upgrading from OpenNebula < 5.2 to OpenNebula >= 5.4 is NOT supported. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

4.6.1 Upgrading a Federation

If you have two or more 4.14.x OpenNebulas working as a Federation, you need to upgrade all of them. The upgrade does not have to be simultaneous, the slaves can be kept running while the master is upgraded.

The steps to follow are:

1. Stop the MySQL replication in all the slaves
2. Upgrade the master OpenNebula
3. Upgrade each slave
4. Resume the replication

During the time between steps 1 and 4 the slave OpenNebulas can be running, and users can keep accessing them if each zone has a local Sunstone instance. There is however an important limitation to note: all the shared database tables will not be updated in the slaves zones. This means that new user accounts, password changes, new ACL rules, etc. will not have any effect in the slaves. Read the federation architecture documentation for more details.

It is recommended to upgrade all the slave zones as soon as possible.

To perform the first step, pause the replication in each slave MySQL:

```sql
mysql> STOP SLAVE;
mysql> SHOW SLAVE STATUS\G
Slave_IO_Running: No
Slave_SQL_Running: No
```

Then follow this section for the master zone. After the master has been updated to 5.6, upgrade each slave zone following this same section.

4.6.2 Upgrading from a High Availability deployment

The recommended procedure to upgrade two OpenNebulas configured in HA is to follow the upgrade procedure in a specific order. Some steps need to be executed in both servers, and others in just the active node. For the purpose of this section, we will still refer to the active node as such even after stopping the cluster, so we run the single node steps always in the same node:

- **Preparation** in the active node.
- **Backup** in the active node.
- Stop the cluster in the active node: `pcs cluster stop`.
- **Installation** in both nodes. Before running `install_gems`, run `gem list > previous_gems.txt` so we can go back to those specific `sinatra` and `rack` gems if the `pcsd` refuses to start.
- Configuration Files Upgrade in the active node.
- Database Upgrade in the active node.
- Check DB Consistency in the active node.
- Reload Start Scripts in CentOS 7 in both nodes.
- Start the cluster in the active node.

4.6.3 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.

The network drivers since OpenNebula 5.0 are located in the Virtual Network, rather than in the host. The upgrade process may ask you questions about your existing VMs, Virtual Networks and hosts, and as such it is wise to have the following information saved beforehand, since in the upgrade process OpenNebula will be stopped.

```
$ onevnet list -x > networks.txt
$ onehost list -x > hosts.txt
$ onevm list -x > vms.txt
```

The list of valid network drivers since 5.0 Wizard are:
- 802.1Q
- dummy
- ebtables
- fw
- ovswitch
- vxlan

Stop OpenNebula and any other related services you may have running: OneFlow, EC2, and Sunstone. Use preferably the system tools, like `systemctl` or `service` as root in order to stop the services.

4.6.4 Backup

Backup the configuration files located in `/etc/one`. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

```
# cp -r /etc/one /etc/one.$(date +'%Y-%m-%d')
```

4.6.5 Installation

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the `install_gems` tool, as the new OpenNebula version may have different gem requirements.

Note: If executing `install_gems` you get a message asking to overwrite files for aws executables you can safely answer “yes”.

4.6. Upgrading from OpenNebula 4.14.x
It is highly recommended not to keep your current oned.conf, and update the oned.conf file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current oned.conf file, read the Compatibility Guide and the complete oned.conf reference for 4.14 and 5.6 versions.

4.6.6 Configuration Files Upgrade

If you haven’t modified any configuration files, the package managers will replace the configuration files with their newer versions and no manual intervention is required.

If you have customized any configuration files under /etc/one we recommend you to follow these steps regardless of the platform/linux distribution.

1. Backup /etc/one (already performed)
2. Install the new packages (already performed)
3. Compare the old and new configuration files: `diff -ur /etc/one.YYYY-MM-DD /etc/one`. Or you can use graphical diff-tools like meld to compare both directories, which are very useful in this step.
4. Edit the new files and port all the customizations from the previous version.
5. You should never overwrite the configuration files with older versions.

4.6.7 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Warning: For environments in a Federation: Before upgrading the master, make sure that all the slaves have the MySQL replication paused.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the `onedb upgrade -v` command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```
$ onedb upgrade -v --sqlite /var/lib/one/one.db
```

```
$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password: 
Version read: 
Shared tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap
```

(continues on next page)
Local tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap

MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file

>>> Running migrators for shared tables
...

>>> Running migrators for local tables
...
 > Done in 41.93s

Database migrated from 4.11.80 to 4.13.80 (OpenNebula 4.13.80) by onedb command.
Total time: 41.93s

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.6.8 Check DB Consistency

After the upgrade is completed, you should run the command onedb fsck.
First, move the 4.14 backup file created by the upgrade command to a safe place.

$ mv /var/lib/one/mysql_localhost_opennebula.sql /path(for/one-backups/)

Then execute the following command:

$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file

Total errors found: 0

4.6.9 Resume the Federation

This section applies only to environments working in a Federation.
For the master zone: This step is not necessary.
For a slave zone: The MySQL replication must be resumed now.

• First, add two new tables, marketplace_pool and marketplaceapp_pool, to the replication configuration.

Warning: Do not copy the server-id from this example, each slave should already have a unique ID.
vi /etc/my.cnf

```bash
[mysqld]
server-id = 100
replicate-do-table = opennebula.user_pool
replicate-do-table = opennebula.group_pool
replicate-do-table = opennebula.vdc_pool
replicate-do-table = opennebula.zone_pool
replicate-do-table = opennebula.db_versioning
replicate-do-table = opennebula.acl
replicate-do-table = opennebula.marketplace_pool
replicate-do-table = opennebula.marketplaceapp_pool
```

service mysqld restart

- Start the **slave MySQL** process and check its status. It may take a while to copy and apply all the pending commands.

```sql
mysql> START SLAVE;
mysql> SHOW SLAVE STATUS\G
```

The `SHOW SLAVE STATUS` output will provide detailed information, but to confirm that the slave is connected to the master MySQL, take a look at these columns:

- **Slave_IO_State**: Waiting for master to send event
- **Slave_IO_Running**: Yes
- **Slave_SQL_Running**: Yes

4.6.10 Reload Start Scripts in CentOS 7

In order for the system to re-read the configuration files you should issue the following command after the installation of the new packages:

```bash
# systemctl daemon-reload
```

4.6.11 Update the Drivers

You should be able now to start OpenNebula as usual, running `service opennebula start` as root. At this point, as `oneadmin` user, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.6.12 Create the Virtual Router ACL Rule

There is a new kind of resource introduced in 5.0: Virtual Routers. If you want your existing users to be able to create their own Virtual Routers, create the following ACL Rule:

```
$ oneacl create "* VROUTER/* CREATE *
```
Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.6.13 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the onevm, onevnet, oneimage, oneuser, onehost list commands. Try also using the show subcommand for some resources.

4.6.14 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using ‘onedb restore -f’
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of /etc/one you did to restore your configuration.

4.6.15 Known Issues

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The set password statement can be used for this:

```
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```

4.7 Upgrading from OpenNebula 4.12.x

This section describes the installation procedure for systems that are already running a 4.12.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide for 4.14, 5.0 and 5.6, and the Release Notes to know what is new in OpenNebula 5.6.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that **upgrading from OpenNebula < 5.2 to OpenNebula >= 5.4 is NOT supported.** You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.
4.7.1 Upgrading a Federation

If you have two or more 4.12.x OpenNebulas working as a Federation, you need to upgrade all of them. The upgrade does not have to be simultaneous, the slaves can be kept running while the master is upgraded.

The steps to follow are:

1. Stop the MySQL replication in all the slaves
2. Upgrade the master OpenNebula
3. Upgrade each slave
4. Resume the replication

During the time between steps 1 and 4 the slave OpenNebulas can be running, and users can keep accessing them if each zone has a local Sunstone instance. There is however an important limitation to note: all the shared database tables will not be updated in the slaves zones. This means that new user accounts, password changes, new ACL rules, etc. will not have any effect in the slaves. Read the federation architecture documentation for more details.

It is recommended to upgrade all the slave zones as soon as possible.

To perform the first step, pause the replication in each slave MySQL:

```sql
mysql> STOP SLAVE;
mysql> SHOW SLAVE STATUS
```

Slave_IO_Running: No
Slave_SQL_Running: No

Then follow this section for the master zone. After the master has been updated to 5.6, upgrade each slave zone following this same section.

4.7.2 Upgrading from a High Availability deployment

The recommended procedure to upgrade two OpenNebulas configured in HA is to follow the upgrade procedure in a specific order. Some steps need to be executed in both servers, and others in just the active node. For the purpose of this section, we will still refer to the active node as such even after stopping the cluster, so we run the single node steps always in the same node:

- **Preparation** in the active node.
- **Backup** in the active node.
- Stop the cluster in the active node: `pcs cluster stop`.
- **Installation** in both nodes. Before running `install_gems`, run `gem list > previous_gems.txt` so we can go back to those specific `sinatra` and `rack` gems if the pcsd refuses to start.
- **Configuration Files Upgrade** in the active node.
- **Database Upgrade** in the active node.
- **Check DB Consistency** in the active node.
- **Reload Start Scripts in CentOS 7** in both nodes.
- Start the cluster in the active node.
4.7.3 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.

Warning: In 4.14 the **FAILED** state dissapears. You need to delete all the VMs in this state **before** the new version is installed.

The network drivers since OpenNebula 5.0 are located in the Virtual Network, rather than in the host. The upgrade process may ask you questions about your existing VMs, Virtual Networks and hosts, and as such it is wise to have the following information saved beforehand, since in the upgrade process OpenNebula will be stopped.

```
$ onevnet list -x > networks.txt
$ onehost list -x > hosts.txt
$ onevm list -x > vms.txt
```

The list of valid network drivers since 5.0 Wizard are:

- 802.1Q
- dummy
- ebtables
- fw
- ovswitch
- vxlan

Stop OpenNebula and any other related services you may have running: OneFlow, EC2, and Sunstone. Use preferably the system tools, like `systemctl` or `service` as root in order to stop the services.

4.7.4 Backup

Backup the configuration files located in `/etc/one`. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

```
# cp -r /etc/one /etc/one.$(date +'%Y-%m-%d')
```

4.7.5 Installation

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the `install_gems` tool, as the new OpenNebula version may have different gem requirements.

It is highly recommended **not to keep** your current `oned.conf`, and update the `oned.conf` file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current `oned.conf` file, read the Compatibility Guide and the complete `oned.conf` reference for 4.12 and 5.0 versions.
4.7.6 Configuration Files Upgrade

If you haven’t modified any configuration files, the package managers will replace the configuration files with their newer versions and no manual intervention is required.

If you have customized any configuration files under /etc/one we recommend you to follow these steps regardless of the platform/linux distribution.

1. Backup /etc/one (already performed)
2. Install the new packages (already performed)
3. Compare the old and new configuration files: diff -ur /etc/one.YYYY-MM-DD /etc/one. Or you can use graphical diff-tools like meld to compare both directories, which are very useful in this step.
4. Edit the new files and port all the customizations from the previous version.
5. You should never overwrite the configuration files with older versions.

4.7.7 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Warning: For environments in a Federation: Before upgrading the master, make sure that all the slaves have the MySQL replication paused.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘onedb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

$ onedb upgrade -v --sqlite /var/lib/one/one.db

$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula

If everything goes well, you should get an output similar to this one:

$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap
Local tables 4.11.80 : OpenNebula 4.12.1 daemon bootstrap

MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file

(continues on next page)
>>> Running migrators for shared tables
Database already uses version 4.11.80

>>> Running migrators for local tables
 > Running migrator /usr/lib/one/ruby/onedb/local/4.11.80_to_4.13.80.rb
**
* WARNING WARNING WARNING WARNING WARNING WARNING WARNING *
**

OpenNebula 4.13.80 improves the management of FAILED VMs
Please remove (onevm delete) any FAILED VM before continuing.

**
* WARNING WARNING WARNING WARNING WARNING WARNING WARNING *
**

The scheduler (and oned) has been update to enforce access
rights on system datastores. This new version also checks that
the user can access the System DS.
This *may require* to update system DS rights of your cloud

Do you want to proceed ? [y/N]y
 > Done in 41.93s

Database migrated from 4.11.80 to 4.13.80 (OpenNebula 4.13.80) by onedb command.
Total time: 41.93s

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it
won’t downgrade databases to previous versions.

4.7.8 Check DB Consistency

After the upgrade is completed, you should run the command onedb fsck.

First, move the 4.12 backup file created by the upgrade command to a safe place.

$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/

Then execute the following command:

$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file

Total errors found: 0

4.7.9 Resume the Federation

This section applies only to environments working in a Federation.
For the **master zone**: This step is not necessary.

For a **slave zone**: The MySQL replication must be resumed now.

- First, add two new tables, `marketplace_pool` and `marketplaceapp_pool`, to the replication configuration.

Warning: Do not copy the server-id from this example, each slave should already have a unique ID.

```
# vi /etc/my.cnf
[mysqld]
server-id = 100
replicate-do-table = opennebula.user_pool
replicate-do-table = opennebula.group_pool
replicate-do-table = opennebula.vdc_pool
replicate-do-table = opennebula.zone_pool
replicate-do-table = opennebula.db_versioning
replicate-do-table = opennebula.acl
replicate-do-table = opennebula.marketplace_pool
replicate-do-table = opennebula.marketplaceapp_pool

# service mysqld restart
```

- Start the **slave MySQL** process and check its status. It may take a while to copy and apply all the pending commands.

```
mysql> START SLAVE;
mysql> SHOW SLAVE STATUS\G
```

The `SHOW SLAVE STATUS` output will provide detailed information, but to confirm that the slave is connected to the master MySQL, take a look at these columns:

- Slave_IO_State: Waiting for master to send event
- Slave_IO_Running: Yes
- Slave_SQL_Running: Yes

4.7.10 Reload Start Scripts in CentOS 7

In order for the system to re-read the configuration files you should issue the following command after the installation of the new packages:

```
# systemctl daemon-reload
```

4.7.11 Update the Drivers

You should be able now to start OpenNebula as usual, running ‘one start’ as oneadmin. At this point, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.
4.7.12 Default Auth

If you are using LDAP as default auth driver, you will need to update `/etc/one/oned.conf` and set the new `DEFAULT_AUTH` variable:

```
DEFAULT_AUTH = "ldap"
```

4.7.13 Create the Virtual Router ACL Rule

There is a new kind of resource introduced in 5.0: Virtual Routers. If you want your existing users to be able to create their own Virtual Routers, create the following ACL Rule:

```
$ oneacl create "* VROUTER/* CREATE *
```

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.7.14 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the `onevm`, `onevnet`, `oneimage`, `oneuser`, `onehost` list commands.

Try also using the `show` subcommand for some resources.

4.7.15 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using `onedb restore -f`
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of `/etc/one` you did to restore your configuration.

4.7.16 Known Issues

If the MySQL database password contains special characters, such as `@` or `#`, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The `set password` statement can be used for this:

```
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```
4.8 Upgrading from OpenNebula 4.10.x

This section describes the installation procedure for systems that are already running a 4.10.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide for 4.12, 4.14, 5.0 and 5.6, and the Release Notes to know what is new in OpenNebula 5.6.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that upgrading from OpenNebula < 5.2 to OpenNebula >= 5.4 is NOT supported. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

4.8.1 Upgrading a Federation

If you have two or more 4.10.x OpenNebulas working as a Federation, you need to upgrade all of them. The upgrade does not have to be simultaneous, the slaves can be kept running while the master is upgraded.

The steps to follow are:

1. Stop the MySQL replication in all the slaves
2. Upgrade the master OpenNebula
3. Upgrade each slave
4. Resume the replication

During the time between steps 1 and 4 the slave OpenNebulas can be running, and users can keep accessing them if each zone has a local Sunstone instance. There is however an important limitation to note: all the shared database tables will not be updated in the slaves zones. This means that new user accounts, password changes, new ACL rules, etc. will not have any effect in the slaves. Read the federation architecture documentation for more details.

It is recommended to upgrade all the slave zones as soon as possible.

To perform the first step, pause the replication in each slave MySQL:

```bash
mysql> STOP SLAVE;
mysql> SHOW SLAVE STATUS\G
Slave_IO_Running: No
Slave_SQL_Running: No
```

Then follow this section for the master zone. After the master has been updated to 5.6, upgrade each slave zone following this same section.

4.8.2 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.
Warning: In 4.14 the FAILED state dissapears. You need to delete all the VMs in this state **before** the new version is installed.

The network drivers since OpenNebula 5.0 are located in the Virtual Network, rather than in the host. The upgrade process may ask you questions about your existing VMs, Virtual Networks and hosts, and as such it is wise to have the following information saved beforehand, since in the upgrade process OpenNebula will be stopped.

```bash
$ onevnet list -x > networks.txt
$ onehost list -x > hosts.txt
$ onevm list -x > vms.txt
```

The list of valid network drivers since 5.0 Wizard are:

- 802.1Q
- dummy
- ebtables
- fw
- ovswitch
- vxlan

Stop OpenNebula and any other related services you may have running: OneFlow, EC2, and Sunstone. Use preferably the system tools, like `systemctl` or `service` as `root` in order to stop the services.

4.8.3 Backup

Backup the configuration files located in `/etc/one`. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

```bash
$ cp -r /etc/one /etc/one.$(date +'%Y-%m-%d')
```

4.8.4 Installation

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the `install_gems` tool, as the new OpenNebula version may have different gem requirements.

It is highly recommended **not to keep** your current `oned.conf`, and update the `oned.conf` file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current `oned.conf` file, read the Compatibility Guide and the complete oned.conf reference for 4.10 and 5.0 versions.

4.8.5 Configuration Files Upgrade

If you haven’t modified any configuration files, the package managers will replace the configuration files with their newer versions and no manual intervention is required.

If you have customized any configuration files under `/etc/one` we recommend you to follow these steps regardless of the platform/linux distribution.

1. Backup `/etc/one` (already performed)
2. Install the new packages (already performed)

3. Compare the old and new configuration files: `diff -ur /etc/one.YYYY-MM-DD /etc/one`. Or you can use graphical diff-tools like `meld` to compare both directories, which are very useful in this step.

4. Edit the **new** files and port all the customizations from the previous version.

5. You should **never** overwrite the configuration files with older versions.

4.8.6 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Warning: For environments in a Federation: Before upgrading the **master**, make sure that all the slaves have the MySQL replication paused.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘onedb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```
$ onedb upgrade -v --sqlite /var/lib/one/one.db
```

```
$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password: 
Version read:
Shared tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap
Local tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap

>>> Running migrators for shared tables
> Running migrator /usr/lib/one/ruby/onedb/shared/4.4.0_to_4.4.1.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.4.1_to_4.5.80.rb
> Done in 0.75s

Database migrated from 4.4.0 to 4.5.80 (OpenNebula 4.5.80) by onedb command.

>>> Running migrators for local tables
Database already uses version 4.5.80
Total time: 0.77s
```
Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.8.7 Check DB Consistency

After the upgrade is completed, you should run the command onedb fsck.

First, move the 4.10 backup file created by the upgrade command to a safe place.

$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/

Then execute the following command:

$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file
Total errors found: 0

4.8.8 Resume the Federation

This section applies only to environments working in a Federation.

For the master zone: This step is not necessary.

For a slave zone: The MySQL replication must be resumed now.

• First, add 3 new tables, vdc_pool, marketplace_pool and marketplaceapp_pool to the replication configuration.

Warning: Do not copy the server-id from this example, each slave should already have a unique ID.

vi /etc/my.cnf
[mysqld]
server-id = 100
replicate-do-table = opennebula.user_pool
replicate-do-table = opennebula.group_pool
replicate-do-table = opennebula.vdc_pool
replicate-do-table = opennebula.zone_pool
replicate-do-table = opennebula.db_versioning
replicate-do-table = opennebula.acl
replicate-do-table = opennebula.marketplace_pool
replicate-do-table = opennebula.marketplaceapp_pool

service mysqld restart

• Start the slave MySQL process and check its status. It may take a while to copy and apply all the pending commands.

mysql> START SLAVE;
mysql> SHOW SLAVE STATUS\G

4.8. Upgrading from OpenNebula 4.10.x
The `SHOW SLAVE STATUS` output will provide detailed information, but to confirm that the slave is connected to the master MySQL, take a look at these columns:

```
Slave_IO_State: Waiting for master to send event
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
```

4.8.9 Reload Start Scripts in CentOS 7

In order for the system to re-read the configuration files you should issue the following command after the installation of the new packages:

```
# systemctl daemon-reload
```

4.8.10 Enable Start Scripts in CentOS 7

CentOS 7 packages now come with systemd scripts instead of the old systemV ones. You will need to enable the services again so they are started on system boot. The names of the services are the same as the previous one. For example, to enable `opennebula`, `opennebula-sunstone`, `opennebula-flow` and `opennebula-gate` you can issue these commands:

```
# systemctl enable opennebula
# systemctl enable opennebula-sunstone
# systemctl enable opennebula-flow
# systemctl enable opennebula-gate
```

4.8.11 Update the Drivers

You should be able now to start OpenNebula as usual, running `one start` as oneadmin. At this point, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.8.12 Default Auth

If you are using LDAP as default auth driver, you will need to update `/etc/one/oned.conf` and set the new `DEFAULT_AUTH` variable:

```
DEFAULT_AUTH = "ldap"
```

4.8.13 vCenter Password

Note: This step only applies if you are upgrading from OpenNebula 4.10.0. If you are already using 4.10.1 or 4.10.2 you can skip this step.
If you already have a host with vCenter drivers you need to update the password as version >4.10.0 expects it to be encrypted. To do so, proceed to Sunstone -> Infrastructure -> Hosts, click on the vCenter host(s) and change the value in `VCENTER_PASSWORD` field. It will be automatically encrypted.

4.8.14 Create the Security Group ACL Rule

There is a new kind of resource introduced in 4.12: Security Groups. If you want your existing users to be able to create their own Security Groups, create the following ACL Rule:

```bash
$ oneacl create "* SECGROUP/* CREATE *"
```

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.8.15 Create the Virtual Router ACL Rule

There is a new kind of resource introduced in 5.0: Virtual Routers. If you want your existing users to be able to create their own Virtual Routers, create the following ACL Rule:

```bash
$ oneacl create "* VROUTER/* CREATE *"
```

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.8.16 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the `onevm`, `onevnet`, `oneimage`, `oneuser`, `onehost` list commands. Try also using the `show` subcommand for some resources.

4.8.17 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using `onedb restore -f`
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of `/etc/one` you did to restore your configuration.

4.8.18 Known Issues

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The `set password` statement can be used for this:
4.9 Upgrading from OpenNebula 4.8.x

This section describes the installation procedure for systems that are already running a 4.8.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide for 4.10, 4.12, 4.14, 5.0 and 5.6, and the Release Notes to know what is new in OpenNebula 5.6.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that upgrading from OpenNebula < 5.2 to OpenNebula >= 5.4 is NOT supported. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

4.9.1 Upgrading a Federation

If you have two or more 4.8 OpenNebulas working as a Federation, you need to upgrade all of them. The upgrade does not have to be simultaneous, the slaves can be kept running while the master is upgraded.

The steps to follow are:

1. Stop the MySQL replication in all the slaves
2. Upgrade the **master** OpenNebula
3. Upgrade each **slave**
4. Resume the replication

During the time between steps 1 and 4 the slave OpenNebulas can be running, and users can keep accessing them if each zone has a local Sunstone instance. There is however an important limitation to note: all the shared database tables will not be updated in the slaves zones. This means that new user accounts, password changes, new ACL rules, etc. will not have any effect in the slaves. Read the federation architecture documentation for more details.

It is recommended to upgrade all the slave zones as soon as possible.

To perform the first step, **pause the replication in each slave MySQL**:

```bash
mysql> STOP SLAVE;
mysql> SHOW SLAVE STATUS\G
Slave_IO_Running: No
Slave_SQL_Running: No
```

Then follow this section for the **master zone**. After the master has been updated to 5.6, upgrade each **slave zone** following this same section.
4.9.2 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.

Warning: In 4.14 the FAILED state dissapears. You need to delete all the VMs in this state before the new version is installed.

The network drivers since OpenNebula 5.0 are located in the Virtual Network, rather than in the host. The upgrade process may ask you questions about your existing VMs, Virtual Networks and hosts, and as such it is wise to have the following information saved beforehand, since in the upgrade process OpenNebula will be stopped.

```bash
$ onevnet list -x > networks.txt
$ onehost list -x > hosts.txt
$ onevm list -x > vms.txt
```

The list of valid network drivers since 5.0 Wizard are:

- 802.1Q
- dummy
- ebtables
- fw
- ovsswitch
- vxlan

Stop OpenNebula and any other related services you may have running: EC2, OCCI, and Sunstone. As oneadmin, in the front-end:

```bash
$ sunstone-server stop
$ oneflow-server stop
$ econe-server stop
$ one stop
```

4.9.3 Backup

Backup the configuration files located in `/etc/one`. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

```bash
# cp -r /etc/one /etc/one.YYYY-MM-DD
```

Note: Substitute `YYYY-MM-DD` with the date.

4.9.4 Installation

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the `install_gems` tool, as the new OpenNebula version may have different gem requirements.
It is highly recommended **not to keep** your current `oned.conf`, and update the `oned.conf` file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current `oned.conf` file, read the *Compatibility Guide* and the complete `oned.conf` reference for 4.8 and 5.0 versions.

4.9.5 Configuration Files Upgrade

If you haven’t modified any configuration files, the package managers will replace the configuration files with their newer versions and no manual intervention is required.

If you have customized *any* configuration files under `/etc/one` we recommend you to follow these steps regardless of the platform/linux distribution.

1. Backup `/etc/one` (already performed)
2. Install the new packages (already performed)
3. Compare the old and new configuration files: `diff -ur /etc/one.YYYY-MM-DD /etc/one`. Or you can use graphical diff-tools like `meld` to compare both directories, which are very useful in this step.
4. Edit the *new* files and port all the customizations from the previous version.
5. You should *never* overwrite the configuration files with older versions.

4.9.6 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the `onedb` command. You can specify any Sqlite or MySQL database. Check the `onedb` reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Warning: For environments in a Federation: Before upgrading the *master*, make sure that all the slaves have the MySQL replication paused.

After you install the latest OpenNebula, and fix any possible conflicts in `oned.conf`, you can issue the `onedb upgrade -v` command. The connection parameters have to be supplied with the command line options, see the `onedb` manpage for more information. Some examples:

```
$ onedb upgrade -v --sqlite /var/lib/one/one.db

$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap
```

(continues on next page)
Local tables 4.4.0: OpenNebula 4.4.0 daemon bootstrap

>>> Running migrators for shared tables
 > Running migrator /usr/lib/one/ruby/onedb/shared/4.4.0_to_4.4.1.rb
 > Done in 0.00s

 > Running migrator /usr/lib/one/ruby/onedb/shared/4.4.1_to_4.5.80.rb
 > Done in 0.75s

Database migrated from 4.4.0 to 4.5.80 (OpenNebula 4.5.80) by onedb command.

>>> Running migrators for local tables
Database already uses version 4.5.80
Total time: 0.77s

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.9.7 Check DB Consistency

After the upgrade is completed, you should run the command onedb fsck.
First, move the 4.8 backup file created by the upgrade command to a safe place.

$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/

Then execute the following command:

$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file
Total errors found: 0

4.9.8 Resume the Federation

This section applies only to environments working in a Federation.
For the master zone: This step is not necessary.
For a slave zone: The MySQL replication must be resumed now.
 • First, add 3 new tables, vdc_pool, marketplace_pool and marketplaceapp_pool to the replication configuration.

Warning: Do not copy the server-id from this example, each slave should already have a unique ID.

vi /etc/my.cnf
[mysqld]

(continues on next page)
server-id = 100
replicate-do-table = opennebula.user_pool
replicate-do-table = opennebula.group_pool
replicate-do-table = opennebula.vdc_pool
replicate-do-table = opennebula.zone_pool
replicate-do-table = opennebula.db_versioning
replicate-do-table = opennebula.acl
replicate-do-table = opennebula.marketplace_pool
replicate-do-table = opennebula.marketplaceapp_pool

service mysqld restart

• Start the slave MySQL process and check its status. It may take a while to copy and apply all the pending commands.

mysql> START SLAVE;
mysql> SHOW SLAVE STATUS

The SHOW SLAVE STATUS output will provide detailed information, but to confirm that the slave is connected to the master MySQL, take a look at these columns:

Slave_IO_State: Waiting for master to send event
Slave_IO_Running: Yes
Slave_SQL_Running: Yes

4.9.9 Update the Drivers

You should be able now to start OpenNebula as usual, running ‘one start’ as oneadmin. At this point, execute onehost sync to update the new drivers in the hosts.

Warning: Doing onehost sync is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.9.10 Default Auth

If you are using LDAP as default auth driver, you will need to update /etc/one/oned.conf and set the new DEFAULT_AUTH variable:

DEFAULT_AUTH = "ldap"

4.9.11 Create the Security Group ACL Rule

There is a new kind of resource introduced in 4.12: Security Groups. If you want your existing users to be able to create their own Security Groups, create the following ACL Rule:

$ oneacl create "* SECGROUP/* CREATE *"
4.9.12 Create the Virtual Router ACL Rule

There is a new kind of resource introduced in 5.0: Virtual Routers. If you want your existing users to be able to create their own Virtual Routers, create the following ACL Rule:

```bash
$ oneacl create "* VROUTER/* CREATE *
```

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.9.13 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the onevm, onevnet, oneimage, oneuser, onehost list commands. Try also using the show subcommand for some resources.

4.9.14 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using ‘onedb restore -f’
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of /etc/one you did to restore your configuration.

4.9.15 Known Issues

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The set password statement can be used for this:

```bash
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```

4.10 Upgrading from OpenNebula 4.6.x

This section describes the installation procedure for systems that are already running a 4.6.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version
Upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide for 4.8, 4.10, 4.12, 4.14, 5.0 and 5.6, and the Release Notes to know what is new in OpenNebula 5.6.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that upgrading from OpenNebula < 5.2 to OpenNebula >= 5.4 is NOT supported. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

4.10.1 Upgrading a Federation

If you have two or more 4.6 OpenNebulas working as a Federation, you need to upgrade all of them. The upgrade does not have to be simultaneous, the slaves can be kept running while the master is upgraded.

The steps to follow are:

1. Stop the MySQL replication in all the slaves
2. Upgrade the master OpenNebula
3. Upgrade each slave
4. Resume the replication

During the time between steps 1 and 4 the slave OpenNebulas can be running, and users can keep accessing them if each zone has a local Sunstone instance. There is however an important limitation to note: all the shared database tables will not be updated in the slaves zones. This means that new user accounts, password changes, new ACL rules, etc. will not have any effect in the slaves. Read the federation architecture documentation for more details.

It is recommended to upgrade all the slave zones as soon as possible.

To perform the first step, pause the replication in each slave MySQL:

```
mysql> STOP SLAVE;

mysql> SHOW SLAVE STATUS\G

Slave_IO_Running: No
Slave_SQL_Running: No
```

Then follow this section for the master zone. After the master has been updated to 5.6, upgrade each slave zone following this same section.

4.10.2 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.

Warning: In 4.14 the FAILED state dissapears. You need to delete all the VMs in this state before the new version is installed.
The network drivers since OpenNebula 5.0 are located in the Virtual Network, rather than in the host. The upgrade process may ask you questions about your existing VMs, Virtual Networks and hosts, and as such it is wise to have the following information saved beforehand, since in the upgrade process OpenNebula will be stopped.

$ onevnet list -x > networks.txt
$ onehost list -x > hosts.txt
$ onevm list -x > vms.txt

The list of valid network drivers since 5.0 Wizard are:

- 802.1Q
- dummy
- ebtables
- fw
- ovswitch
- vxlan

Stop OpenNebula and any other related services you may have running: EC2, OCCI, and Sunstone. As oneadmin, in the front-end:

$ sunstone-server stop
$ oneflow-server stop
$ econe-server stop
$ occi-server stop
$ one stop

4.10.3 Backup

Backup the configuration files located in /etc/one. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

```
# cp -r /etc/one /etc/one.YYYY-MM-DD
```

Note: Substitute YYYY-MM-DD with the date.

4.10.4 Installation

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the install_gems tool, as the new OpenNebula version may have different gem requirements.

It is highly recommended not to keep your current oned.conf, and update the oned.conf file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current oned.conf file, read the Compatibility Guide and the complete oned.conf reference for 4.6 and 5.0 versions.

4.10.5 Configuration Files Upgrade

If you haven’t modified any configuration files, the package managers will replace the configuration files with their newer versions and no manual intervention is required.
If you have customized any configuration files under /etc/one we recommend you to follow these steps regardless of the platform/linux distribution.

1. Backup /etc/one (already performed)
2. Install the new packages (already performed)
3. Compare the old and new configuration files: diff -ur /etc/one.YYYY-MM-DD /etc/one. Or you can use graphical diff-tools like meld to compare both directories, which are very useful in this step.
4. Edit the new files and port all the customizations from the previous version.
5. You should never overwrite the configuration files with older versions.

4.10.6 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Warning: For environments in a Federation: Before upgrading the master, make sure that all the slaves have the MySQL replication paused.

Note: If you have a MAC_PREFIX in oned.conf different than the default 02:00, open /usr/lib/one/ruby/onedb/local/4.5.80_to_4.7.80.rb and change the value of the ONEDCONF_MAC_PREFIX constant.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘onedb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```bash
$ onedb upgrade -v --sqlite /var/lib/one/one.db
$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```bash
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap
Local tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap

>>> Running migrators for shared tables
  > Running migrator /usr/lib/one/ruby/onedb/shared/4.4.0_to_4.4.1.rb
  > Done in 0.00s
```

(continues on next page)
Database migrated from 4.4.0 to 4.5.80 (OpenNebula 4.5.80) by onedb command.

Database already uses version 4.5.80
Total time: 0.77s

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.10.7 Check DB Consistency

After the upgrade is completed, you should run the command `onodb fsck`.

First, move the 4.6 backup file created by the upgrade command to a safe place.

```
$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/
```

Then execute the following command:

```
$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onodb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file
```

Total errors found: 0

4.10.8 Resume the Federation

This section applies only to environments working in a Federation.

For the **master zone**: This step is not necessary.

For a **slave zone**: The MySQL replication must be resumed now.

- First, add 3 new tables, `vdc_pool`, `marketplace_pool` and `marketplaceapp_pool` to the replication configuration.

Warning: Do not copy the server-id from this example, each slave should already have a unique ID.

```
# vi /etc/my.cnf
[mysqld]
server-id = 100
replicate-do-table = opennebula.user_pool
replicate-do-table = opennebula.group_pool
replicate-do-table = opennebula.vdc_pool
replicate-do-table = opennebula.zone_pool
replicate-do-table = opennebula.db_versioning
```

(continues on next page)
replicate-do-table = opennebula.acl
replicate-do-table = opennebula.marketplace_pool
replicate-do-table = opennebula.marketplaceapp_pool

service mysqld restart

• Start the slave MySQL process and check its status. It may take a while to copy and apply all the pending commands.

mysql> START SLAVE;
mysql> SHOW SLAVE STATUS\G

The SHOW SLAVE STATUS output will provide detailed information, but to confirm that the slave is connected to the master MySQL, take a look at these columns:

Slave_IO_State: Waiting for master to send event
Slave_IO_Running: Yes
Slave_SQL_Running: Yes

4.10.9 Update the Drivers

You should be able now to start OpenNebula as usual, running ‘one start’ as oneadmin. At this point, execute onehost sync to update the new drivers in the hosts.

Warning: Doing onehost sync is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.10.10 Create the Security Group ACL Rule

There is a new kind of resource introduced in 4.12: Security Groups. If you want your existing users to be able to create their own Security Groups, create the following ACL Rule:

$ oneacl create "* SECGROUP/* CREATE *"

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.10.11 Create the Virtual Router ACL Rule

There is a new kind of resource introduced in 5.0: Virtual Routers. If you want your existing users to be able to create their own Virtual Routers, create the following ACL Rule:

$ oneacl create "* VROUTER/* CREATE *"

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.
4.10.12 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the onevm, onevnet, oneimage, oneuser, onehost list commands. Try also using the show subcommand for some resources.

4.10.13 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using 'onedb restore -f'
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of /etc/one you did to restore your configuration.

4.10.14 Known Issues

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The set password statement can be used for this:

```
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```

4.11 Upgrading from OpenNebula 4.4.x

This section describes the installation procedure for systems that are already running a 4.4.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide for 4.6, 4.8, 4.10, 4.12, 4.14, 5.0 and 5.6, and the Release Notes to know what is new in OpenNebula 5.6.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that **upgrading from OpenNebula < 5.2 to OpenNebula >= 5.4 is NOT supported**. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

4.11.1 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.
Warning: In 4.14 the FAILED state dissapears. You need to delete all the VMs in this state before the new version is installed.

The network drivers since OpenNebula 5.0 are located in the Virtual Network, rather than in the host. The upgrade process may ask you questions about your existing VMs, Virtual Networks and hosts, and as such it is wise to have the following information saved beforehand, since in the upgrade process OpenNebula will be stopped.

```shell
$ onevnet list -x > networks.txt
$ onehost list -x > hosts.txt
$ onevm list -x > vms.txt
```

The list of valid network drivers since 5.0 Wizard are:

- 802.1Q
- dummy
- etables
- fw
- ovswitch
- vxlan

Stop OpenNebula and any other related services you may have running: EC2, OCCI, and Sunstone. As oneadmin, in the front-end:

```shell
$ sunstone-server stop
$ oneflow-server stop
$ econe-server stop
$ occi-server stop
$ one stop
```

4.11.2 Backup

Backup the configuration files located in `/etc/one`. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

4.11.3 Installation

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the install_gems tool, as the new OpenNebula version may have different gem requirements.

It is highly recommended not to keep your current `oned.conf`, and update the `oned.conf` file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current `oned.conf` file, read the Compatibility Guide and the complete oned.conf reference for 4.4 and 5.0 versions.

4.11.4 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.
You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Note: If you have a MAC_PREFIX in oned.conf different than the default 02:00, open `/usr/lib/one/ruby/onedb/local/4.5.80_to_4.7.80.rb` and change the value of the ONEDCONF_MAC_PREFIX constant.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘onedb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```
$ onedb upgrade -v --sqlite /var/lib/one/one.db

$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap
Local tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap

>>> Running migrators for shared tables
  > Running migrator /usr/lib/one/ruby/onedb/shared/4.4.0_to_4.4.1.rb
  > Done in 0.00s

  > Running migrator /usr/lib/one/ruby/onedb/shared/4.4.1_to_4.5.80.rb
  > Done in 0.75s

Database migrated from 4.4.0 to 4.5.80 (OpenNebula 4.5.80) by onedb command.

>>> Running migrators for local tables
Database already uses version 4.5.80
Total time: 0.77s
```

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.11.5 Check DB Consistency

After the upgrade is completed, you should run the command `onedb fsck`.

First, move the 4.4 backup file created by the upgrade command to a safe place.

```
$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/
```

Then execute the following command:

```
4.11. Upgrading from OpenNebula 4.4.x 78
```
4.11.6 Update the Drivers

You should be able now to start OpenNebula as usual, running ‘one start’ as oneadmin. At this point, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.11.7 Create the Security Group ACL Rule

There is a new kind of resource introduced in 4.12: Security Groups. If you want your existing users to be able to create their own Security Groups, create the following ACL Rule:

```
$ oneacl create "* SECGROUP/* CREATE *"
```

4.11.8 Create the Virtual Router ACL Rule

There is a new kind of resource introduced in 5.0: Virtual Routers. If you want your existing users to be able to create their own Virtual Routers, create the following ACL Rule:

```
$ oneacl create "* VROUTER/* CREATE *"
```

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.11.9 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the onevm, onenetc, oneimage, oneuser, onehost list commands. Try also using the show subcommand for some resources.

4.11.10 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using 'onedb restore -f'
- Uninstall OpenNebula 5.6, and install again your previous version.
• Copy back the backup of `/etc/one` you did to restore your configuration.

4.11.11 Known Issues

If the MySQL database password contains special characters, such as `@` or `#`, the `onedb` command will fail to connect to it.

The workaround is to temporarily change the `oneadmin`’s password to an ASCII string. The `set password` statement can be used for this:

```
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```

4.12 Upgrading from OpenNebula 4.2

This section describes the installation procedure for systems that are already running a 4.2 OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide for 4.4, 4.6, 4.8, 4.10, 4.12, 4.14, 5.0 and 5.6, and the Release Notes to know what is new in OpenNebula 5.6.

Warning: With the new multi-system DS functionality, it is now required that the system DS is also part of the cluster. If you are using System DS 0 for Hosts inside a Cluster, any VM saved (stop, suspend, undeploy) will not be able to be resumed after the upgrade process.

Warning: Two drivers available in 4.0 are now discontinued: `ganglia` and `iscsi`.

- `iscsi` drivers have been moved out of the main OpenNebula distribution and are available (although not supported) as an addon.
- `ganglia` drivers have been moved out of the main OpenNebula distribution and are available (although not supported) as an addon.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that upgrading from OpenNebula < 5.2 to OpenNebula >= 5.4 is NOT supported. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

4.12.1 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.
Warning: In 4.14 the **FAILED** state dissapears. You need to delete all the VMs in this state **before** the new version is installed.

The network drivers since OpenNebula 5.0 are located in the Virtual Network, rather than in the host. The upgrade process may ask you questions about your existing VMs, Virtual Networks and hosts, and as such it is wise to have the following information saved beforehand, since in the upgrade process OpenNebula will be stopped.

```
$ onevnet list -x > networks.txt
$ onehost list -x > hosts.txt
$ onevm list -x > vms.txt
```

The list of valid network drivers since 5.0 Wizard are:

- 802.1Q
- dummy
- ebtables
- fw
- ovswitch
- vxlan

Stop OpenNebula and any other related services you may have running: EC2, OCCI, and Sunstone. As `oneadmin`, in the front-end:

```
$ sunstone-server stop
$ oneflow-server stop
$ econe-server stop
$ occi-server stop
$ one stop
```

4.12.2 Backup

Backup the configuration files located in `/etc/one`. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

4.12.3 Installation

Follow the *Platform Notes* and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the `install_gems` tool, as the new OpenNebula version may have different gem requirements.

It is highly recommended **not to keep** your current `oned.conf`, and update the `oned.conf` file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current `oned.conf` file, read the *Compatibility Guide* and the complete `oned.conf` reference for 4.2 and 5.0 versions.

4.12.4 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

4.12. **Upgrading from OpenNebula 4.2**
You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Note: If you have a MAC_PREFIX in oned.conf different than the default 02:00, open /usr/lib/one/ruby/ onedb/local/4.5.80_to_4.7.80.rb and change the value of the ONEDCONF_MACRO_PREFIX constant.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘onedb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```
$ onedb upgrade -v --sqlite /var/lib/one/one.db
$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap
Local tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap

>>> Running migrators for shared tables
> Running migrator /usr/lib/one/ruby/onedb/shared/4.4.0_to_4.4.1.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.4.1_to_4.5.80.rb
> Done in 0.75s

Database migrated from 4.4.0 to 4.5.80 (OpenNebula 4.5.80) by onedb command.

>>> Running migrators for local tables
Database already uses version 4.5.80
Total time: 0.77s
```

If you receive the message “ATTENTION: manual intervention required”, read the section *Manual Intervention Required* below.

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.12.5 Check DB Consistency

After the upgrade is completed, you should run the command `onedb fsck`.

First, move the 4.2 backup file created by the upgrade command to a safe place.
4.12.6 Update the Drivers

You should be able now to start OpenNebula as usual, running ‘one start’ as oneadmin. At this point, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.12.7 Create the Security Group ACL Rule

There is a new kind of resource introduced in 4.12: Security Groups. If you want your existing users to be able to create their own Security Groups, create the following ACL Rule:

```
$ oneacl create "* SECGROUP/* CREATE *
```

4.12.8 Create the Virtual Router ACL Rule

There is a new kind of resource introduced in 5.0: Virtual Routers. If you want your existing users to be able to create their own Virtual Routers, create the following ACL Rule:

```
$ oneacl create "* VROUTER/* CREATE *
```

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.12.9 Setting new System DS

With the new multi-system DS functionality, it is now required that the system DS is also part of the cluster. If you are using System DS 0 for Hosts inside a Cluster, any VM saved (stop, suspend, undeploy) will **not be able to be resumed after the upgrade process**.

You will need to have at least one system DS in each cluster. If you don’t already, create new system DS with the same definition as the system DS 0 (TM_MAD driver). Depending on your setup this may or may not require additional configuration on the hosts.

You may also try to recover saved VMs (stop, suspend, undeploy) following the steps described in this thread of the users mailing list.
4.12.10 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs. As a measure of caution, look for any error messages in one.log, and check that all drivers are loaded successfully. After that, keep an eye on one.log while you issue the onevm, onevnet, oneimage, oneuser, onehost list commands. Try also using the show subcommand for some resources.

4.12.11 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using ‘onedb restore -f’
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of /etc/one you did to restore your configuration.

4.12.12 Known Issues

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The set password statement can be used for this:

```bash
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```

4.12.13 Manual Intervention Required

If you have a datastore configured to use a tm driver not included in the OpenNebula distribution, the onedb upgrade command will show you this message:

```
ATTENTION: manual intervention required

The Datastore <id> <name> is using the custom TM MAD '<tm_mad>'. You will need to define new configuration parameters in oned.conf for this driver, see http://opennebula.org/documentation:rel4.4:upgrade
```

Since OpenNebula 4.4, each tm_mad driver has a TM_MAD_CONF section in oned.conf. If you developed the driver, it should be fairly easy to define the required information looking at the existing ones:

```bash
# The configuration for each driver is defined in TM_MAD_CONF. These values are used when creating a new datastore and should not be modified since they define the datastore behaviour.
# name : name of the transfer driver, listed in the -d option of the TM_MAD section
# ln_target : determines how the persistent images will be cloned when a new VM is instantiated.
# NONE: The image will be linked and no more storage capacity will be used
# SELF: The image will be cloned in the Images datastore
# SYSTEM: The image will be cloned in the System datastore
```

(continues on next page)
clone_target : determines how the non persistent images will be cloned when a new VM is instantiated.
NONE: The image will be linked and no more storage capacity will be used
SELF: The image will be cloned in the Images datastore
SYSTEM: The image will be cloned in the System datastore
shared : determines if the storage holding the system datastore is shared
among the different hosts or not. Valid values: "yes" or "no"

```
TM_MAD_CONF = {
    name = "lvm",
    ln_target = "NONE",
    clone_target= "SELF",
    shared = "yes"
}
```

4.13 Upgrading from OpenNebula 4.0.x

This section describes the installation procedure for systems that are already running a 4.0.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide for 4.2, 4.4, 4.6, 4.8, 4.10, 4.12, 4.14, 5.0 and 5.6, and the Release Notes to know what is new in OpenNebula 5.6.

Warning: With the new multi-system DS functionality, it is now required that the system DS is also part of the cluster. If you are using System DS 0 for Hosts inside a Cluster, any VM saved (stop, suspend, undeploy) will not be able to be resumed after the upgrade process.

Warning: Two drivers available in 4.0 are now discontinued: **ganglia** and **iscsi**.

- **iscsi** drivers have been moved out of the main OpenNebula distribution and are available (although not supported) as an addon.
- **ganglia** drivers have been moved out of the main OpenNebula distribution and are available (although not supported) as an addon.

Warning: There are combinations of **VMware storage** no longer supported (see the VMFS Datastore guide for the supported configurations).

If you want to upgrade and you are using SSH, NFS or VMFS without SSH-mode, you will need to manually migrate your images to a newly created VMFS with SSH-mode datastore. To do so implies powering off all the VMs with images in any of the deprecated datastores, upgrade OpenNebula, create a VMFS datastore and then manually register the images from those deprecated datastores into the new one. Let us know if you have doubts or problems with this process.
Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that upgrading from OpenNebula < 5.2 to OpenNebula >= 5.4 is NOT supported. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

4.13.1 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.

Warning: In 4.14 the FAILED state dissapears. You need to delete all the VMs in this state before the new version is installed.

The network drivers since OpenNebula 5.0 are located in the Virtual Network, rather than in the host. The upgrade process may ask you questions about your existing VMs, Virtual Networks and hosts, and as such it is wise to have the following information saved beforehand, since in the upgrade process OpenNebula will be stopped.

```
$ onevnet list -x > networks.txt
$ onehost list -x > hosts.txt
$ onevm list -x > vms.txt
```

The list of valid network drivers since 5.0 Wizard are:
- 802.1Q
- dummy
- ebtables
- fw
- ovswitch
- vxlan

Stop OpenNebula and any other related services you may have running: EC2, OCCI, and Sunstone. As oneadmin, in the front-end:

```
$ sunstone-server stop
$ oneflow-server stop
$ econe-server stop
$ occi-server stop
$ one stop
```

4.13.2 Backup

Backup the configuration files located in /etc/one. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

4.13.3 Installation

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.
Make sure to run the `install_gems` tool, as the new OpenNebula version may have different gem requirements.

It is highly recommended **not to keep** your current `oned.conf`, and update the `oned.conf` file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current `oned.conf` file, read the Compatibility Guide and the complete `oned.conf` reference for 4.0 and 5.0 versions.

4.13.4 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the `onedb` command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Note: If you have a MAC_PREFIX in `oned.conf` different than the default `02:00`, open `/usr/lib/one/ruby/onedb/local/4.5.80_to_4.7.80.rb` and change the value of the `ONEDCONF_MAC_PREFIX` constant.

After you install the latest OpenNebula, and fix any possible conflicts in `oned.conf`, you can issue the `onedb upgrade -v` command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```bash
$ onedb upgrade -v --sqlite /var/lib/one/one.db
$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```bash
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap
Local tables 4.4.0 : OpenNebula 4.4.0 daemon bootstrap

>>> Running migrators for shared tables
  > Running migrator /usr/lib/one/ruby/onedb/shared/4.4.0_to_4.4.1.rb
  > Done in 0.00s
  
  > Running migrator /usr/lib/one/ruby/onedb/shared/4.4.1_to_4.5.80.rb
  > Done in 0.75s

Database migrated from 4.4.0 to 4.5.80 (OpenNebula 4.5.80) by onedb command.

>>> Running migrators for local tables
Database already uses version 4.5.80
Total time: 0.77s
```

If you receive the message “ATTENTION: manual intervention required”, read the section *Manual Intervention Required* below.

4.13. Upgrading from OpenNebula 4.0.x
Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.13.5 Check DB Consistency

After the upgrade is completed, you should run the command `onedb fsck`.

First, move the 4.0 backup file created by the upgrade command to a safe place.

```bash
$ mv /var/lib/one/mysql_localhost_opennebula.sql /path/for/one-backups/
```

Then execute the following command:

```bash
$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file
```

Total errors found: 0

4.13.6 Update the Drivers

You should be able now to start OpenNebula as usual, running `one start` as oneadmin. At this point, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.13.7 Setting new System DS

With the new multi-system DS functionality, it is now required that the system DS is also part of the cluster. If you are using System DS 0 for Hosts inside a Cluster, any VM saved (stop, suspend, undeploy) will not be able to be resumed after the upgrade process.

You will need to have at least one system DS in each cluster. If you don’t already, create new system DS with the same definition as the system DS 0 (TM_MAD driver). Depending on your setup this may or may not require additional configuration on the hosts.

You may also try to recover saved VMs (stop, suspend, undeploy) following the steps described in this thread of the users mailing list.

4.13.8 Create the Security Group ACL Rule

There is a new kind of resource introduced in 4.12: Security Groups. If you want your existing users to be able to create their own Security Groups, create the following ACL Rule:

```bash
$ oneacl create "* SECGROUP/* CREATE *
```

4.13. Upgrading from OpenNebula 4.0.x
4.13.9 Create the Virtual Router ACL Rule

There is a new kind of resource introduced in 5.0: Virtual Routers. If you want your existing users to be able to create their own Virtual Routers, create the following ACL Rule:

```
$ oneacl create "* VROUTER/* CREATE *"
```

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.13.10 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs.

As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the `onevm`, `onevnet`, `oneimage`, `oneuser`, `onehost` *list* commands. Try also using the `show` subcommand for some resources.

4.13.11 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using `onedb restore -f`
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of `/etc/one` you did to restore your configuration.

4.13.12 Known Issues

If the MySQL database password contains special characters, such as @ or #, the `onedb` command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The `set password` statement can be used for this:

```
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```

4.13.13 Manual Intervention Required

If you have a datastore configured to use a tm driver not included in the OpenNebula distribution, the `onedb upgrade` command will show you this message:

ATTENTION: manual intervention required

The Datastore `<id> `<name>` is using the custom TM MAD `<tm_mad>`'. You will need to define new configuration parameters in `oned.conf` for this driver, see http://opennebula.org/documentation:rel4.4:upgrade

4.13. Upgrading from OpenNebula 4.0.x
Since OpenNebula 4.4, each tm_mad driver has a TM_MAD_CONF section in oned.conf. If you developed the driver, it should be fairly easy to define the required information looking at the existing ones:

```plaintext
# The configuration for each driver is defined in TM_MAD_CONF. These 
# values are used when creating a new datastore and should not be modified 
# since they define the datastore behaviour.
# name : name of the transfer driver, listed in the -d option of the 
# TM_MAD section
# ln_target : determines how the persistent images will be cloned when 
# a new VM is instantiated.
# NONE: The image will be linked and no more storage capacity will be used 
# SELF: The image will be cloned in the Images datastore 
# SYSTEM: The image will be cloned in the System datastore 
# clone_target : determines how the non persistent images will be 
# cloned when a new VM is instantiated.
# NONE: The image will be linked and no more storage capacity will be used 
# SELF: The image will be cloned in the Images datastore 
# SYSTEM: The image will be cloned in the System datastore 
# shared : determines if the storage holding the system datastore is shared 
# among the different hosts or not. Valid values: "yes" or "no"

TM_MAD_CONF = [
    name = "lvm",
    ln_target = "NONE",
    clone_target = "SELF",
    shared = "yes"
]
```

4.14 Upgrading from OpenNebula 3.8.x

This section describes the installation procedure for systems that are already running a 3.8.x OpenNebula. The upgrade to OpenNebula 5.6 can be done directly following this section, you don’t need to perform intermediate version upgrades. The upgrade will preserve all current users, hosts, resources and configurations; for both Sqlite and MySQL backends.

Read the Compatibility Guide for 4.0, 4.2, 4.4, 4.6, 4.8, 4.10, 4.12, 4.14, 5.0 and 5.6, and the Release Notes to know what is new in OpenNebula 5.6.

Warning: With the new multi-system DS functionality, it is now required that the system DS is also part of the cluster. If you are using System DS 0 for Hosts inside a Cluster, any VM saved (stop, suspend, undeploy) will not be able to be resumed after the upgrade process.

Warning: Two drivers available in 3.8 are now discontinued: **ganglia** and **iscsi**.

- **iscsi** drivers have been moved out of the main OpenNebula distribution and are available (although not supported) as an **addon**.
- **ganglia** drivers have been moved out of the main OpenNebula distribution and are available (although not supported) as an **addon**.
Warning: There are combinations of VMware storage no longer supported (see the VMFS Datastore guide for the supported configurations).

If you want to upgrade and you are using SSH, NFS or VMFS without SSH-mode, you will need to manually migrate your images to a newly created VMFS with SSH-mode datastore. To do so implies powering off all the VMs with images in any of the deprecated datastores, upgrade OpenNebula, create a VMFS datastore and then manually register the images from those deprecated datastores into the new one. Let us know if you have doubts or problems with this process.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that upgrading from OpenNebula < 5.2 to OpenNebula >= 5.4 is NOT supported. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

4.14.1 Preparation

Before proceeding, make sure you don’t have any VMs in a transient state (prolog, migr, epil, save). Wait until these VMs get to a final state (runn, suspended, stopped, done). Check the Managing Virtual Machines guide for more information on the VM life-cycle.

Warning: In 4.14 the FAILED state dissapears. You need to delete all the VMs in this state before the new version is installed.

The network drivers since OpenNebula 5.0 are located in the Virtual Network, rather than in the host. The upgrade process may ask you questions about your existing VMs, Virtual Networks and hosts, and as such it is wise to have the following information saved beforehand, since in the upgrade process OpenNebula will be stopped.

```
$ onevnet list -x > networks.txt
$ onehost list -x > hosts.txt
$ onevm list -x > vms.txt
```

The list of valid network drivers since 5.0 Wizard are:

- 802.1Q
- dummy
- ebtables
- fw
- ovswitch
- vxlan

Stop OpenNebula and any other related services you may have running: EC2, OCCI, and Sunstone. As oneadmin, in the front-end:

```
$ sunstone-server stop
$ oneflow-server stop
$ econe-server stop
$ occi-server stop
$ one stop
```
4.14.2 Backup

Backup the configuration files located in /etc/one. You don’t need to do a manual backup of your database, the onedb command will perform one automatically.

4.14.3 Installation

Follow the Platform Notes and the Installation guide, taking into account that you will already have configured the passwordless ssh access for oneadmin.

Make sure to run the install_gems tool, as the new OpenNebula version may have different gem requirements.

It is highly recommended not to keep your current oned.conf, and update the oned.conf file shipped with OpenNebula 5.6 to your setup. If for any reason you plan to preserve your current oned.conf file, read the Compatibility Guide and the complete oned.conf reference for 3.8 and 5.0 versions.

4.14.4 Database Upgrade

The database schema and contents are incompatible between versions. The OpenNebula daemon checks the existing DB version, and will fail to start if the version found is not the one expected, with the message ‘Database version mismatch’.

You can upgrade the existing DB with the ‘onedb’ command. You can specify any Sqlite or MySQL database. Check the onedb reference for more information.

Warning: Make sure at this point that OpenNebula is not running. If you installed from packages, the service may have been started automatically.

Note: If you have a MAC_PREFIX in oned.conf different than the default 02:00, open /usr/lib/one/ruby/onedb/local/4.5.80_to_4.7.80.rb and change the value of the ONEDCONF_MAC_PREFIX constant.

After you install the latest OpenNebula, and fix any possible conflicts in oned.conf, you can issue the ‘onedb upgrade -v’ command. The connection parameters have to be supplied with the command line options, see the onedb manpage for more information. Some examples:

```
$ onedb upgrade -v --sqlite /var/lib/one/one.db

$ onedb upgrade -v -S localhost -u oneadmin -p oneadmin -d opennebula
```

If everything goes well, you should get an output similar to this one:

```
$ onedb upgrade -v -u oneadmin -d opennebula
MySQL Password:
Version read:
Shared tables 3.8.0 : OpenNebula 3.8.0 daemon bootstrap
Local tables  3.8.0 : OpenNebula 3.8.0 daemon bootstrap

MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
mysql -u user -h server -P port db_name < backup_file
```

(continues on next page)
>>> Running migrators for shared tables
> Running migrator /usr/lib/one/ruby/onedb/shared/3.8.0_to_3.8.1.rb
> Done in 0.36s

> Running migrator /usr/lib/one/ruby/onedb/shared/3.8.1_to_3.8.2.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/3.8.2_to_3.8.3.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/3.8.3_to_3.8.4.rb
> Done in 0.56s

> Running migrator /usr/lib/one/ruby/onedb/shared/3.8.4_to_3.8.5.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/3.8.5_to_3.9.80.rb

ATTENTION: manual intervention required
Virtual Machine deployment files have been moved from /var/lib/one to
/var/lib/one/vms. You need to move these files manually:

$ mv /var/lib/one/[0-9]* /var/lib/one/vms

> Done in 1.10s

> Running migrator /usr/lib/one/ruby/onedb/shared/3.9.80_to_3.9.90.rb

ATTENTION: manual intervention required
IM and VM MADS have been renamed in oned.conf. To keep your
existing hosts working, you need to duplicate the drivers with the
old names.

For example, for kvm you will have IM_MAD "kvm" and VM_MAD "kvm", so you
need to add IM_MAD "im_kvm" and VM_MAD "vmm_kvm"

IM_MAD = [
 name = "kvm",
 executable = "one_im_ssh",
 arguments = "-r 0 -t 15 kvm"
]

IM_MAD = [
 name = "im_kvm",
 executable = "one_im_ssh",
 arguments = "-r 0 -t 15 kvm"
]

VM_MAD = [
 name = "kvm",
 executable = "one_vmm_exec",
 arguments = "-t 15 -r 0 kvm",
 default = "vmm_exec/vmm_exec_kvm.conf",
 type = "kvm"
]

VM_MAD = [
 name = "vmm_kvm",
]
executable = "one_vmm_exec",
arguments = "-t 15 -r 0 kvm",
default = "vmm_exec/vmm_exec_kvm.conf",
type = "kvm"

> Done in 0.41s

> Running migrator /usr/lib/one/ruby/onedb/shared/3.9.90_to_4.0.0.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.0.0_to_4.0.1.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.0.1_to_4.1.80.rb
> Done in 0.09s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.1.80_to_4.2.0.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.2.0_to_4.3.80.rb
> Done in 0.68s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.3.80_to_4.3.85.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.3.85_to_4.3.90.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.3.90_to_4.4.0.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.4.0_to_4.4.1.rb
> Done in 0.00s

> Running migrator /usr/lib/one/ruby/onedb/shared/4.4.1_to_4.5.80.rb
> Done in 0.39s

Database migrated from 3.8.0 to 4.5.80 (OpenNebula 4.5.80) by onedb command.

>>> Running migrators for local tables
Database already uses version 4.5.80

Total time: 3.60s

Note: Make sure you keep the backup file. If you face any issues, the onedb command can restore this backup, but it won’t downgrade databases to previous versions.

4.14.5 Check DB Consistency

After the upgrade is completed, you should run the command `onedb fsck`.

First, move the 4.0 backup file created by the upgrade command to a safe place.
Then execute the following command:

```bash
$ onedb fsck -S localhost -u oneadmin -p oneadmin -d opennebula
MySQL dump stored in /var/lib/one/mysql_localhost_opennebula.sql
Use 'onedb restore' or restore the DB using the mysql command:
    mysql -u user -h server -P port db_name < backup_file
Total errors found: 0
```

4.14.6 Virtual Machine Directories

Note: Only for OpenNebula versions < 3.8.3

If you are upgrading from a version **lower than 3.8.3**, you need to move the Virtual Machine deployment files from `/var/lib/one` to `/var/lib/one/vms`:

```bash
$ mv /var/lib/one/[0-9]* /var/lib/one/vms
```

4.14.7 Driver Names

OpenNebula default driver names have changed in the configuration file. Now the names of the vmm and im drivers are not prepended by the type of driver:

- `vmm_kvm → kvm`
- `vmm_xen → xen`
- `vmm_vmware → vmware`
- `vmm_ec2 → ec2`
- `vmm_dummy → dummy`
- `im_kvm → kvm`
- `im_xen → xen`
- `im_vmware → vmware`
- `im_ec2 → ec2`
- `im_ganglia → ganglia`
- `im_dummy → dummy`

To keep your existing hosts working, you need to duplicate the drivers with the old names.

For example, for kvm you will have IM_MAD `kvm` and VM_MAD `kvm`, so you need to add IM_MAD `im_kvm` and VM_MAD `vmm_kvm`

```python
IM_MAD = {
    name = "kvm",
    executable = "one_im_ssh",
    arguments = "-r 3 -t 15 kvm"
}
```

(continues on next page)
4.14.8 Manual Intervention Required

Note: Ignore this section if onedb didn’t output the following message

If you have a datastore configured to use a tm driver not included in the OpenNebula distribution, the onedb upgrade command will show you this message:

ATTENTION: manual intervention required

The Datastore <id> <name> is using the custom TM MAD '<tm_mad>'. You will need to define new configuration parameters in oned.conf for this driver, see http://opennebula.org/documentation:rel4.4:upgrade

Since OpenNebula 4.4, each tm_mad driver has a TM_MAD_CONF section in oned.conf. If you developed the driver, it should be fairly easy to define the required information looking at the existing ones:

```bash
# The configuration for each driver is defined in TM_MAD_CONF. These # values are used when creating a new datastore and should not be modified # since they define the datastore behaviour.
# name : name of the transfer driver, listed in the -d option of the # TM_MAD section
# ln_target : determines how the persistent images will be cloned when # a new VM is instantiated.
# NONE: The image will be linked and no more storage capacity will be used # SELF: The image will be cloned in the Images datastore # SYSTEM: The image will be cloned in the System datastore # clone_target : determines how the non persistent images will be # cloned when a new VM is instantiated.
# NONE: The image will be linked and no more storage capacity will be used # SELF: The image will be cloned in the Images datastore # SYSTEM: The image will be cloned in the System datastore # shared : determines if the storage holding the system datastore is shared
```
4.14.9 Update the Drivers

You should be able now to start OpenNebula as usual, running `one start` as oneadmin. At this point, execute `onehost sync` to update the new drivers in the hosts.

Warning: Doing `onehost sync` is important. If the monitorization drivers are not updated, the hosts will behave erratically.

4.14.10 Setting new System DS

With the new multi-system DS functionality, it is now required that the system DS is also part of the cluster. If you are using System DS 0 for Hosts inside a Cluster, any VM saved (stop, suspend, undeploy) will not be able to be resumed after the upgrade process.

You will need to have at least one system DS in each cluster. If you don’t already, create new system DS with the same definition as the system DS 0 (TM_MAD driver). Depending on your setup this may or may not require additional configuration on the hosts.

You may also try to recover saved VMs (stop, suspend, undeploy) following the steps described in this thread of the users mailing list.

4.14.11 Create the Security Group ACL Rule

There is a new kind of resource introduced in 4.12: Security Groups. If you want your existing users to be able to create their own Security Groups, create the following ACL Rule:

```bash
$ oneacl create "* SECGROUP/* CREATE *
```

4.14.12 Create the Virtual Router ACL Rule

There is a new kind of resource introduced in 5.0: Virtual Routers. If you want your existing users to be able to create their own Virtual Routers, create the following ACL Rule:

```bash
$ oneacl create "* VROUTER/* CREATE *
```

Note: For environments in a Federation: This command needs to be executed only once in the master zone, after it is upgraded to 5.6.

4.14. Upgrading from OpenNebula 3.8.x
4.14.13 Testing

OpenNebula will continue the monitoring and management of your previous Hosts and VMs. As a measure of caution, look for any error messages in oned.log, and check that all drivers are loaded successfully. After that, keep an eye on oned.log while you issue the onevm, onevnet, oneimage, oneuser, onehost list commands. Try also using the show subcommand for some resources.

4.14.14 Restoring the Previous Version

If for any reason you need to restore your previous OpenNebula, follow these steps:

- With OpenNebula 5.6 still installed, restore the DB backup using ‘onedb restore -f’
- Uninstall OpenNebula 5.6, and install again your previous version.
- Copy back the backup of /etc/one you did to restore your configuration.

4.14.15 Known Issues

If the MySQL database password contains special characters, such as @ or #, the onedb command will fail to connect to it.

The workaround is to temporarily change the oneadmin’s password to an ASCII string. The set password statement can be used for this:

```
$ mysql -u oneadmin -p
mysql> SET PASSWORD = PASSWORD('newpass');
```

4.15 vCenter upgrade 5.2 to 5.4

4.15.1 Pre-migration phase

OpenNebula provides a script that must be run before it is upgraded using the oneadmin user account. This script can be downloaded from https://downloads.opennebula.org/packages/opennebula-5.4.1/vcenter_one54_pre.rb.

Warning: As in 5.2 OpenNebula disks cannot have spaces in the VMDK paths. However, OpenNebula 5.4 now exposes all disks of existing templates and VMs. These disks were transparent for 5.2 and cannot have spaces so you need to remove them prior to upgrade. This limitation will be addressed in the short-term in the next maintenance release.

Warning: If you are using the vCenter drivers, there is a manual intervention required in order to upgrade to OpenNebula 5.4. Note that upgrading from OpenNebula < 5.2 to OpenNebula 5.4 is NOT supported. You need to upgrade first to OpenNebula 5.2, and then upgrade to OpenNebula 5.4.

Warning: The pre-migration phase may fail if there are resources in error, please clean resources in failed state prior to continue with this process.
The script will perform the following tasks:

- Establish a connection to every vCenter instance known by OpenNebula
- Retrieve information about clusters, virtual machines, templates, datastores and port groups.
- New information will be added to the OpenNebula resources.
- Some manual intervention may be required.
- For each IMAGE datastore found, a SYSTEM datastore will be created.
- Templates and wild VMs will be inspected in order to discover virtual hard disks and network interface cards that are invisible.
- All Datastores that hosts those virtual hard disks will be imported into OpenNebula.
- OpenNebula images and virtual networks will be created so the invisible disks and nics become visible after upgrade.
- The virtual networks that represent port groups found inside existing templates will have an Ethernet address range with 255 MACs in the pool. You may want to change or increase this address range after the pre-migrator tool finishes.
- OpenNebula hosts, networks and datastores will grouped into OpenNebula clusters. Each vCenter cluster will be assigned to an OpenNebula cluster.
- XML files will be generated under /var/tmp directory. They will be used in the migration phase.

Important: Read carefully the instructions of the Phase 0. It involves modifying /etc/one/oned.conf and /var/lib/one/remotes/datastore/vcenter/rm and restarting OpenNebula. **DON'T FORGET TO DO SO.**
if drv_action("/DS_DRIVER_ACTION_DATA/IMAGE/TEMPLATE/VCENTER_IMPORTED") != "YES"
 vi_client.delete_virtual_disk(img_src,ds_name)
end

in order to avoid that you accidentally remove a virtual hard disk from a template
or wild VM when you delete an image.

- Note that this script may take some time to perform complex tasks so please be
 patient.

- Although this scripts will do its best to be fully automated there may be situations
 where a manual intervention is needed, in that case a WARNING will be shown.

- The virtual networks that represent port groups found inside existing templates
 will have an Ethernet address range with 255 MACs in the pool. You may want to
 change or increase this address range after the pre-migrator tool finishes.

- It's advisable to disable the Sunstone user interface before launching this script
 in order to avoid that OpenNebula objects created by users while
 the script is running are not pre-migrated by the tool.

- This script can be executed as many times as you wish. It will update previous
 results and XML template will be always overwritten.

Don't forget to restart OpenNebula if you have made changes!

Do you want to continue? ([y]/n):

In short, you need to replace the following in /etc/one/oned.conf:

```ruby
DS_MAD_CONF = [
    - NAME = "vcenter", REQUIRED_ATTRS = "VCENTER_CLUSTER", PERSISTENT_ONLY = "YES",
    + NAME = "vcenter", REQUIRED_ATTRS = "", PERSISTENT_ONLY = "NO",
    MARKETPLACE_ACTIONS = "export"
]
```

And the following change in /var/lib/one/remotes/datastore/vcenter/rm:

```ruby
-vi_client.delete_virtual_disk(img_src,
-    ds_name)
+if drv_action("/DS_DRIVER_ACTION_DATA/IMAGE/TEMPLATE/VCENTER_IMPORTED") != "YES"
+    vi_client.delete_virtual_disk(img_src,ds_name)
+end
```

Note: It's advisable to disable the Sunstone user interface while the pre-migrator script is run in order to avoid that
OpenNebula objects created by users while the script is run are not pre-migrated.

In order to execute the script you need to download from https://downloads.opennebula.org/packages/opennebula-5.4.1/vcenter_one54_pre.rb and run it manually as oneadmin.

```bash
$ curl -skLO https://downloads.opennebula.org/packages/opennebula-5.4.1/vcenter_one54_pre.rb
$ ruby vcenter_one54_pre.rb
```

4.15. vCenter upgrade 5.2 to 5.4
Note: If you want to execute this script more than once, please delete /var/tmp/vcenter_one54 directory.

4.15.2 OpenNebula Upgrade

Important: Now you need to continue upgrading the software following the steps described in the upgrade guide.

Follow the *Upgrade OpenNebula software*.

4.15.3 Migration phase

Once OpenNebula packages have been upgraded, you need to execute the pre migration tool for vCenter.

Warning: The migration tool must be run **before** a onedb upgrade command is executed.

The migration tool is launched using the `onedb vcenter-one54` command, and it must be run from the same machine where the pre-migrator tool was executed as it requires some XML templates files stored in the /var/tmp directory.

```
$ onedb vcenter-one54 -v -u <dbuser> -p <dbpass> -d <dbname> -S <dbhost>
```

The migration tool will update some OpenNebula's database tables using the XML files that were created in the pre-migration phase. This is the list of affected tables:

- `template_pool`
- `vm_pool`
- `host_pool`
- `datastore_pool`
- `network_pool`
- `image_pool`

In the following sections you will need to execute `onedb fsck`. Note that you might get the following error: [UNREPAIRED] VM XX has a lease from VNet XX, but it could not be matched to any AR. This is expected for previously invisible NIC interfaces in VMs added in the pre-migration phase.

Continue the upgrade by moving on to the **next section**.